
AC Servo Actuator SHA SG/CG series manual

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

Introduction

Thank you for purchasing our SHA series AC Servo Actuator.

- Improper handling or use of this product may result in an accident or reduced life of the product. Read this document carefully and use the product correctly so that the product can be used safely for many years to come.
- Product specifications are subject to change without notice.
- Keep this manual in a convenient location and refer to it as necessary when operating or maintaining the actuator.
- The end user of the actuator should have a copy of this manual.

SAFETY GUIDE

To use this actuator safely and correctly, be sure to read SAFETY GUIDE and other parts of this document carefully and fully understand the information provided herein before using the actuator.

NOTATION

Important safety information you must note is provided herein. Be sure to observe these instructions.

WARNING	Indicates a potentially hazardous situation, which, if not avoided, could result in death or serious personal injury.
	Indicates a potentially hazardous situation, which, if not avoided, may result in minor or moderate personal injury and/or damage to the equipment.
Caution	Indicates what should be performed or avoided to prevent non-operation or malfunction of the product or negative effects on its performance or function.

LIMITATION OF APPLICATIONS

The equipment listed in this document may not be used for the applications listed below:

- Space equipment
- · Automobile, automotive parts
- Aircraft, aeronautic equipment
- · Amusement equipment, sport equipment, game machines
- Nuclear equipment
- · Machine or devices acting directly on the human body
- Household apparatus
- · Instruments or devices to transport or carry people
- Vacuum equipment
- · Apparatus or devices used in special environments

If the above list includes your intending application for our products, please consult us.

Safety measures are essential to prevent accidents resulting in death, injury or damage of the equipment due to malfunction or faulty operation.

SAFETY NOTE

ITEMS YOU SHOULD NOTE WHEN USING THE ACTUATOR • CAUTIONS RELATED TO THE DESIGN

Always use under followings conditions.

The actuator is designed to be used indoors. Observe the following conditions:

- Ambient temperature: 0 to 40 °C
- Ambient humidity: 20 to 80 %RH (Non-condensation)
- Vibration: Max 25 m/s²
- · No contamination by water, oil
- No corrosive or explosive gas

Follow exactly the instructions in the relating manuals to install the actuator in the equipment.

- Ensure exact alignment of the actuator center and the center of the corresponding machine by following the manual.
- Failure to observe this caution may lead to vibration, resulting in damage of output elements.

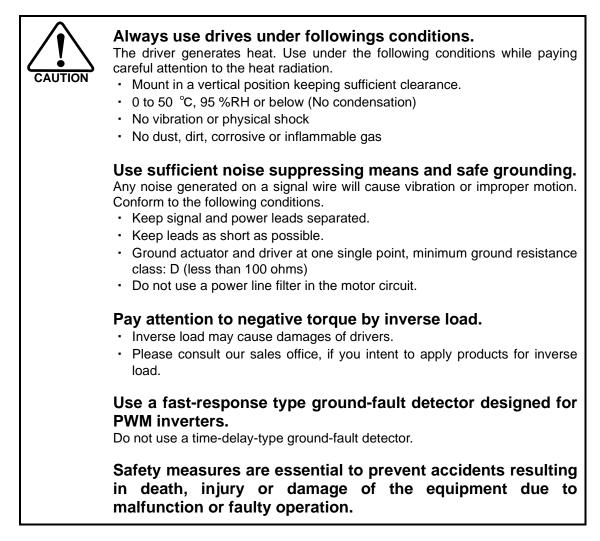
• CAUTIONS FOR USAGE

Keep limited torques of the actuator.

- Keep limited torques of the actuator.
- Be aware, that if arms attached to output element hits by accident an solid, the output element may be uncontrollable.

Never connect cables directly to a power supply socket.

- Each actuator must be operated with a proper driver.
- Failure to observe this caution may lead to injury, fire or damage of the actuator.


Do not apply impacts and shocks

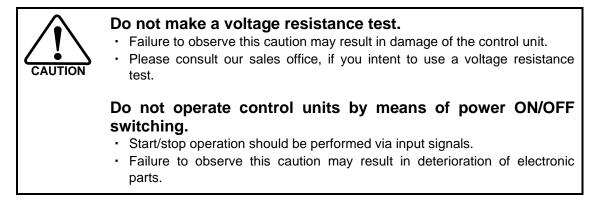
- The actuator directly connects with the encoder so do not use a hammer during installation.
- Failure to observe this caution could damage the encoder and may cause uncontrollable operation.

Avoid handling of actuators by cables.

• Failure to observe this caution may damage the wiring, causing uncontrollable or faulty operation.

ITEMS YOU SHOULD NOTE WHEN USING THE DRIVER • CAUTIONS RELATED TO THE DESIGN

CAUTIONS FOR USAGE


Never change wiring while power is active.

Make sure of power non-active before servicing the products. Failure to observe this caution may result in electric shock or personal injury.

Do not touch terminals or inspect products at least 5 minutes after turning OFF power.

- · Otherwise residual electric charges may result in electric shock.
- Make installation of products not easy to touch their inner electric components.

DISPOSAL

All products or parts have to be disposed of as industrial waste.

Since the case or the box of drivers have a material indication, classify parts and dispose them separately.

Contents

SAFETY GUIDE	.1
NOTATION LIMITATION OF APPLICATIONS	
SAFETY NOTE	
Contents	.5
Related manuals	.7
Conformance to overseas standards	.7

Chapter 1 Outlines

1-1	Overview	1-1
1-2	Model	1-2
1-3	Drivers and extension cables	1-3
1-4	Specifications	1-4
1-5	Motor shaft holding brake	1-14
1-6	External dimensions	1-17
1-7	Mechanical accuracy	1-30
1-8	Positional accuracy	
	One-way positional accuracy Repeatability (CG) Bi-directional repeatability (CG)	1-33
1-9	Encoder specifications (Absolute encoder)	1-34
1-10	O Stiffness	1-36 1-37
1-11	Rotation direction	1-40
1-12	2 Shock resistance	1-41
1-13	3 Resistance to vibration	1-42
1-14	1 Operable range	1-43
1-15	5 Cable specifications Motor cable specifications Encoder cable specifications	1-59

Chapter 2 Selection guidelines

2-1	SHA series selection	2-1
	Allowable load inertia moment	2-1
2-2	Change in load inertia moment	2-5
2-3	Verifying and examining load weights	2-6
	Maximum load moment load	2-7
	Verifying life	
	Verifying static safety coefficients	
2-4	Examining operating status	2-10
	Examining actuator rotation speed	2-10
	Calculating and examining load inertia moment	
	Load torque calculation	
	Acceleration time and deceleration time	2-12
	Examining effective torque and average rotation speed	

Chapter 3 Installing the actuator

3-1	Receiving Inspection	3-1
	Inspection procedure	3-1
3-2	Notices on handling	3-2
	Installation and transmission torque	
	Precautions on installation	
	Use of positioning pins	
	Surface treatments	
3-3	Location and installation	3-6
	Environment of location	3-6
	Installation	

Chapter 4 Options

4-1	Options	4-1
	With near origin and end limit sensors (option code: L)	
	Cable exiting from side face (option code: Y)	
	Output shaft single revolution absolute model (option code: S)	4-1
	With stand (CG only, option code: V)	4-2
	Extension cables	

Appendix

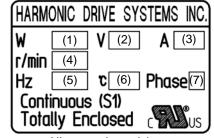
A-1	Unit conversion	5-1
A-2	Calculating inertia moment	5-3
	Formula of mass and inertia moment	

Related manual

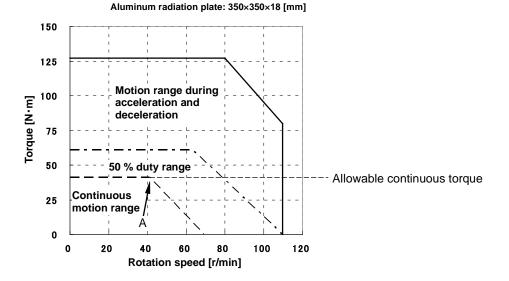
The table below lists related manual. Check each item as necessary.

Title	Description
AC Servo Driver HA-800 series manual	The specifications and characteristics of HA-800 series are explained.

Conformance to overseas standards


The SHA series actuator conforms to following overseas standards.

UL Standard	UL1004-1,UL1004-6 (File No. E243316)
CSA Standard	C22.2 No.100
European Low Voltage EC Directives	EN60034-1, EN60034-5


UL nameplate sticker

The following specifications of the SHA series actuators are shown based on the UL1004-1,UL1004-6 (File No. E243316) standards.

Nameplate field	Explanation
(1)	Output [W] at point A on the graph below
(2)	Voltage [V] between motor wires at point A on the graph below
(3)	Allowable continuous current [A]
(4)	Rotation speed [r/min] at point A on the graph below
(5)	Current fundamental frequency [Hz] at point A on the graph below
(6)	Allowable range temperature [°C]
(7)	Number of phase

UL nameplate sticker

The nameplate values of various models are shown below.

SG/HP type								
	SHA20A							
Item		51	81	101	121	161		
(1) Output at point A	W	99	109	109	106	86		
(2) Voltage at point A	V	113	117	117	119	122		
(3) Allowable continuous current	A	2.1	2.0	2.0	1.9	1.6		
(4) Speed at point A	rpm	44	30	24	21	17		
(5) Frequency at point A	Hz	187	203	202	212	228		
(6) Allowable range temperature	°C	40						
(7) Number of phase	7) Number of phase – 3							

item		51	81	101	121	161
(1) Output at point A	W	99	109	109	106	86
(2) Voltage at point A	V	113	117	117	119	122
(3) Allowable						
continuous	Α	2.1	2.0	2.0	1.9	1.6
current						
(4) Speed at point A	rpm	44	30	24	21	17
(5) Frequency at	Hz	187	203	202	212	228
point A	112	107	203	202	212	220
(6) Allowable range	°C			40		
temperature				40		
(7) Number of phase	—	3				

	lodel		S	6HA25/	4				SHA	25A		
Item		(Motor input voltage 100 V)					(Motor input voltage 200 V)					
		51	81	101	121	161	11	51	81	101	121	161
(1) Output at point A	W	165	188	190	178	127	133	175	203	207	178	127
(2) Voltage at point A	V	61	64	65	64	62	101	115	122	125	125	120
(3) Allowable continuous current	А	4.7	4.7	4.7	4.5	3.7	3.0	3.0	3.0	2.9	2.6	2.1
(4) Speed at point A	rpm	45	31	25	21	15	141	41	29	24.5	21	15
(5) Frequency at point A	Hz	191	209	210	212	201	129	174	196	206	212	201
(6) Allowable range temperature	°C						40					
(7) Number of phase	—						3					

N	lodel	SHA32A							SHA40A				
Item		11	51	81	101	121	161	51	81	101	121	161	
(1) Output at point A	W	240	328	369	373	308	233	487	564	570	560	480	
(2) Voltage at point A	V	97	110	114	118	116	115	109	115	115	116	122	
(3) Allowable continuous current	A	6.0	6.0	6.0	5.7	5.0	4.1	9.0	9.0	9.0	8.8	7.2	
(4) Speed at point A	rpm	115	34	23	20	16.5	12.5	29	20.5	16.5	14	12	
(5) Frequency at point A	Hz	105	145	155	168	166	168	123	138	139	141	161	
(6) Allowable range temperature	°C						40						
(7) Number of phase	-	3											

N N	lodel	SHA45A							
Item		51	81	101	121	161			
(1) Output at point A	W	456	534	543	551	537			
(2) Voltage at point A	V	103	108	108	109	112			
(3) Allowable continuous current	A	10.0	10.0	10.0	10.0	9.2			
(4) Speed at point A	rpm	25	17.6	14.3	12	9.8			
(5) Frequency at point A	Hz	107	119	120	121	132			
(6) Allowable range temperature	°C			40					
(7) Number of phase			3						

	lodel		SHA	58A		SHA65A				
Item	Item			121	161	81	101	121	161	
(1) Output at point A	W	897	948	863	731	964	963	958	802	
(2) Voltage at point A	V	99	101	101	107	92	92	96	100	
(3) Allowable continuous current	A	17.7	17.8	16.4	13.4	22.0	21.9	20.1	16.3	
(4) Speed at point A	rpm	12	10	8.5	7.2	10	8	7.4	6.2	
(5) Frequency at point A	Hz	130	135	137	155	108	108	119	133	
(6) Allowable range temperature	°C				4	0				
(7) Number of phase	—	3								

CG type

N N	lodel	SHA20A							
Item		50	80	100	120	160			
(1) Output at point A	W	97	108	108	106	85			
(2) Voltage at point A	V	112	116	116	119	122			
(3) Allowable continuous current	А	2.1	2.1	2.1	2.0	1.7			
(4) Speed at point A	rpm	44	29.5	24	21	17			
(5) Frequency at point A	Hz	183	197	200	210	227			
(6) Allowable range temperature	°C			40					
(7) Number of phase	-			3					

Item	(M		SHA25A put volt	-	0 V)	SHA25A (Motor input voltage 200 V)					
		50	80	100	120	160	50	80	100	120	160
(1) Output at point A	W	167	191	192	174	127	177	201	204	174	127
(2) Voltage at point A	V	62	65	65	63	61	115	121	123	123	119
(3) Allowable continuous current	A	4.7	4.7	4.7	4.5	3.7	3.0	3.0	3.0	2.6	2.1
(4) Speed at point A	rpm	47	32	25.5	20.5	15	42	29	24	20.5	15
(5) Frequency at point A	Hz	196	213	213	205	200	175	193	200	205	200
(6) Allowable range temperature	°C					4	0				
(7) Number of phase	_		3								

N N	lodel		S	SHA32	A		SHA40A				
Item		50	80	100	120	160	50	80	100	120	160
(1) Output at point A	W	321	372	373	308	233	493	558	568	568	488
(2) Voltage at point A	V	109	114	117	116	115	109	114	115	116	123
(3) Allowable continuous current	A	6.0	6.0	5.7	5.0	4.1	9.0	9.0	9.0	8.8	7.2
(4) Speed at point A	rpm	34	23.5	20	16.5	12.5	30	20.5	16.6	14.2	12.2
(5) Frequency at point A	Hz	142	157	167	165	167	125	137	138	142	163
(6) Allowable range temperature	°C	40									
(7) Number of phase	—		3								

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

Chapter 1

Outlines

This chapter explains the features, functions and specifications of the actuator.

1-1	Overview	
1-2	Model·····	
1-3	Drivers and extension cables	
1-4	Specifications	
	Motor shaft holding brake	
	External dimensions	
	Mechanical accuracy	
1-8	One-way positional accuracy	
	Encoder specifications (Absolute encoder) ·····	
1-1() Stiffness	
1-11		
1-12	2 Shock resistance	
1-1:		
	Operable range ······	
	5 Cable specifications	

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

1-1 Overview

SHA The SHA series of AC Servo Actuators provide high torque and high accuracy rotary motion. These AC Servo Actuators are each composed of a Harmonic Drive® speed reducer for precise control and a flat, high performance AC servo motor with an integral absolute multi-turn encoder. The SHA series AC Servo Actuators all feature a large hollow shaft through the axis of rotation.

There are 3 types of speed reducers: SG with SHG series incorporated, HP with HPF series incorporated, and CG with the CSG series incorporated. They are an advanced version of current FHA series AC Servo Actuators having a flat, hollow structure.

One key feature of the SHA actuators is their compact size. The outside diameter has been minimized, providing a maximum torque/volume ratio which is approximately double that of conventional FHA actuators. A through hole is provided in the center of the actuator, through which wiring, air lines, laser beams or concentric shafts may be passed.

The HA-800 series driver is a dedicated family of servo drive units for position/speed control, developed exclusively for driving SHA series actuators. The small, multi-functional drivers control the SHA series actuators' operations with great accuracy and precision. Additionally, the REL driver series may be used, which provides interface to many network field buses.

SHA actuators play an important role in driving many factory automation (FA) equipment, such as robot joints, alignment mechanisms for semi-conductor and LCD, metal-cutting machines, printing machine roller drive, etc.

Improved Torque Deinsity

High-torque SHG or CSG series Harmonic Drive® speed reducers are incorporated into the actuator for precise control and the outer diameter of the actuator has been reduced by 20% compared to our conventional products. As a result, the maximum torque/volume ratio has approximately doubled compared to our previous actuator designs. Based on maximum torque, you can select a model which is one size smaller. Also, the output torque is much higher than direct drive motors of similar volume/weight..

• Expanded product lineup

SHA-SG is available in 7 sizes, accommodating high torque up to 3,400 Nm, with reduction ratios of 51 to 161. CG series has 4 frame sizes with 5 reduction ratios of 50:1 to 160:1.

Modular design

The components of the SHA series, such as speed reducers, output shaft bearing, motor, brake and encoder, are arranged based on modular design. We can also custom-design a model meeting your specific requirements, so please contact your HDLLC sales representative.

Standard 17-bit magnetic absolute encoder

The newly developed AC servo motors are equipped with Harmonic Drive's original highly reliable 17-bit magnetic absolute encoder* with safety function. The serial communication reduces wiring and provides not only a multi-turn encoder, which is a must-have feature on actuators with speed reducers, but it also has an internal backup to retain absolute positions even when the encoder cable is disconnected for short periods of time.

The encoder circuitry also constantly compares two separate sets of encoder signals. If any abnormality is detected, the encoder's built-in failsafe function outputs an alarm signal to the host system.

*Size. 20 is equipped with an optical encoder.

Supporting open network control when combined with a dedicated driver

By using a dedicated HA-800 series drive, you can control your actuator on a MECHATROLINK-II or CC-Link network. The REL series drives support EtherCat, CANOpen, and DeviceNet.

• For high speeds

Also supports high speeds in combination with the HPF hollow shaft planetary gearhead.

• CG model has an improved output shaft deflection accuracy

After reviewing the output rotary unit structure, the higher accuracy of the surface runout and shaft deflection has been achieved. Together with easy-to-index speed ratios that are divisible, such as 50:1 and 100:1, this is ideal for use with index tables. There is also an output shaft single revolution absolute model available as an option that can control the position even with infinite rotation in one direction.

1

1-2 Ordering Code

Ordering code for the SHA series actuators and how to interpret them are explained below. Examples of standard models:

	SHA	32	А	101	SG	_	В	12	Α	200	—	10	S17b	Α	_	С	L	_	SP
	(1)	(2)	(3)	(4)	(5)	-	(6)	(7)	(8)	(9)		(10)	(11)	(12)	-	(13)	(14)		(15)
(1) Mod	el: Sł	HA se	ries S	ervo A	Actuat	tor												
(2	2) Size	s:		HP:	25, 32	2													

SG: 20, 25, 32, 40, 45, 58, 65

CG: 20, 25, 32, 40

(3) Version symbol A: Standard, Y: Yaskawa compatible, M: Mitsubishi compatible, P: Panasonic compatible(4) Reduction ratio (R:1)

Reduction ratio 11:1 is for the HPF hollow shaft planetary speed reducer (size 25, 32) Reduction ratios 50 and higher are for the HarmonicDrive® speed reducers.

	HPF		SHG	CSG										
	11 11:1	51	51:1	50	50:1									
		81	81:1	80	80:1									
11		101	101:1	100	100:1									
												121	121:1	120
		161	161:1	160	160:1									

(5) Speed reducer

HP	HPF hollow shaft planetary
SG	HarmonicDrive [®] SHG series
CG	HarmonicDrive [®] CSG series

(6) Motor version symbol

А	Size 58, 65 (SG only)
В	Size 25, 32, 40
С	Size 20
D	Size 45 (SG only)

(7) Motor size

08	Size 20
09	Size 25
12	Size 32
15	Size 40
16	Size 45 (SG)
21	Size 58, 65 (SG)

(8) Brake

. ,	A Without brail B With brake Motor input voltage						
	В	With brake					
(9)	Motor in	put voltage					

۰.		put voltago
	100	100 V (Size 25 only)
	200	200 V
	LV	48V DC to 90V DC (Size 20, 25, 32)

(10) Encoder format

10	A-Format (2.5Mbps, 1 to 1 connection)
00	Incremental Encoder
14	Panasonic Format
16	Mitsubishi Format (not available in size 20)
17	Yaskawa Format (not available in size 20)

- (11) Encoder type, resolution
 - S17D131072 pulses/revolution (Nikon-A format)D250D250: Incremental encoder (size 25, 32, and 40)
- (12) Encoder phase angle: Phase difference between induced voltage in motor phase U and absolute origin
 - A 0 degree
 - B 30 degree
- (13) Connector specification

(

Ν

0	With standard connector

- With pigtails
- (14) Option symbol
 L With near origin and end limit sensors
 Y Side exit cable
 V With mounting stand (CG only)
 S Output shaft single revolution absolute encoder (CG only)

(Please contact us for options)

(15) Special specification

No description	Standard product
SP	Special specification code

1-3 Drives and extension cables

The combinations of SHA actuators, drives and extension cables are as follows:

		SHA20A	SHA25A	SHA32A	SHA40A
REL Servo Drive		REL-230-18			REL-230-40 (ratio <120) REL-230-36 (ratio ≥120)
I/O command type		HA-800A-3D/E-200	HA-800A-3D/E-200 [HA-800A-6D/E-100]	HA-800A-6D/E-200	
MECHATROLINK type		HA-800B-3D/E-200	HA-800B-3D/E-200 [HA-800B-6D/E-100]	HA-800B-6D/E-200	HA-800B-6D/E-200 or HA-800B-24D/E-200
CC-Link type		HA-800C-3D/E-200	HA-800C-6D/E-200 or HA-800C-24D/E-200		
Extension cables	Motor wire		A800: EWD-MB**-A06-T 230: EWD-S**-A08-A2		HA-800□-6D/E: EWD-MB**-A06-TN3 HA-800□-24D/E: EWD-MB**-A06-TMC
(option)	Encoder wire		<u> </u>		

		SHA45A	SHA58A	SHA65A
I/O command type		HA-800A-24D/E-200	HA-800A-24D/E-200 HA-800A-24D/E-200	
MECHATROLINK type		HA-800B-24D/E-200	HA-800B-24D/E-200 HA-800B-24D/E-200	
CC-Link	type	HA-800C-24D/E-200	IA-800C-24D/E-200 HA-800C-24D/E-200 HA-800C-24	
Extension cables	Motor wire	EWD-MB∗∗-A06-TMC	EWD-MB**-D0	9-TMC
(option)	Encoder wire	EWD-S**-A08-3M14	EWD-S**-D10	-3M14

Note: ** in the extension cable model indicates the cable length: 03 = 3 m, 05 = 5 m, 10 = 10 m The models shown in brackets are those with 100 V input voltage.

1-4 Specifications

SG

SG		Model			SHA20A					
Item			51	81	101	121	161			
Recom	nended	Drive		REL-230-	18 / HA-800□	-3D/E-200				
	4	N∙m	73	96	107	113	120			
Max. torque	'	kgf∙m	7.4	9.8	10.9	11.5	12.2			
Allowable contin	uous	N∙m	21	35	43	48	48			
torque ^{*1*2}		kqf∙m	2.1	3.6	4.4	4.9	4.9			
Max. rotational s	beed ^{*1}	rpm	117.6	74.1	59.4	49.6	37.3			
		N∙m/A _{rms}	16.5	27	33	40	53			
Torque consta	nt	kgf ⋅ m/A _{rms}	1.7	2.7	3.4	4.1	5.4			
Max. current	*1	Arms	6.0	4.9	4.5	4.0	3.4			
Allowable continuous of	urrent*1*2	Arms	2.1	2.0	2.0	1.9	1.6			
EMF constan	V/(rpm)	1.9	3.0	3.7	4.5	5.9				
Phase resistance		Ω		•	1.4	-				
Phase inducta	nce	mH			2.5					
Inertia moment	GD ² /4	kg∙m²	0.23	0.58	0.91	1.3	2.3			
(without brake)	J	kgf · cm · s ²	2.4	6.0	9.3	13	24			
Inertia moment	GD ² /4	kg∙m²	0.26	0.65	1.0	1.4	2.6			
(with brake)	J	kgf · cm · s ²	2.6	6.6	10	15	26			
N·m		187								
Permissible mome	nt load	kgf∙m	19.1							
Manage at State		N ⋅ m/rad	25.2 × 10 ⁴							
Moment stiffne	255	kgf ⋅ m/arc-min	7.5							
One-way positional ac		arc-sec	60	50	50	50	50			
Encoder typ	е			A	bsolute encode	ər				
En en den men els		Single-turn	2 ¹⁷ (131072)							
Encoder resolu	ition	Multi-turn *5	2 ¹⁶ (65536)							
Output shaft reso	lution	counts/rev	6684672	10616832	13238272	15859712	21102592			
Mass (without b	rake)	kg		•	2.0		•			
Mass (with bra	ke)	kg			2.1					
Environmental conditions ^{*6}			Operating temperature: 0 to 40 °C/Storage temperature: -20 to 60 °C Operating humidity/storage humidity: 20 to 80 %RH (no condensation) Resistance to vibration: 25 m/s ² (frequency: 10 to 400 Hz) Shock resistance: 300 m/s ^{2 *4} No dust, no metal powder, no corrosive gas, no inflammable gas, no oil mist To be used indoors, no direct sunlight Altitude: less than 1000 m above sea level							
Moto		Insulation resistance: 100 M Ω or more (by DC500 V insulation tester) Dielectric strength: AC1500 V/1 min Insulation class: A								
	ing dire			lled in any dire						
Protect	ion stru	icture	l lotally enclos	sed self-cooled	type (IP54)					

The table shows typical output values of actuators.

*1: Typical characteristics when combined (driven by ideal sine wave) with our drive.

*2: Value after temperature rise and saturation when the 320x320x16 [mm] aluminum heatsink is installed.

*3: Value of phase induced voltage constant multiplied by 3.

*4: For testing conditions, refer to [1-12 Shock resistance] (P1-41) and [1-13 Resistance to vibration] (P1-42). Motor operation is not guaranteed in applications where vibrations and impacts are continuously applied for a long period of time.

*5: The multi-turn detector range is -32768 to 32767.

*6: For details, refer to [3-3 Location and installation] (P3-6).

SG/HP								r					
		Model	SHA25A (Motor input voltage 100 V)				SHA25A (Motor input voltage 200 V)						
Item			(MC 51	81	101	age 100 121	JV) 161	11	(Motor 51	1nput v	voltage	200 V)	161
			REL 230-18 /					-	230-18	-	-		-
Recom	mendeo	d Drive			00-6D			REL	230-10		230-30 E-200	/ NA-OU	-100
		N∙m	127	178	204	217	229	26	127	178	204	217	229
Max. torque ^{*1}		kgf∙m	13	18.2	20.8	22.1	23.4	2.7	13	18.2	20.8	22.1	23.4
Allowable contin	uous	N•m	35	58	73	81	81	9.0	41	67	81	81	81
torque ^{*1*2}	uouo	kgf∙m	3.6	5.9	7.4	8.2	8.2	0.92	4.2	6.8	8.2	8.2	8.2
Max. rotational s	beed ^{*1}	rpm	94.1	59.3	47.5	39.7	29.8	509.1	109.8	69.1	55.4	46.3	34.8
·		N∙m/A _{rms}	11.1	17.9	22	27	36	4.2	19	31	39	46	62
Torque consta	nt	kgf∙m/A _{rms}	1.1	1.8	2.3	2.7	3.6	0.43	2.0	3.2	4.0	4.7	6.3
Max. current	*1	Arms	14.9	13.0	12.1	10.9	9.0	8.9	8.6	7.5	7.0	6.3	5.2
Allowable continuous c	urrent ^{*1*2}	Arms	4.7	4.7	4.7	4.5	3.7	3.0	3.0	3.0	2.9	2.6	2.1
EMF constant	t ^{*3}	V/(rpm)	1.3	2.0	2.5	3.0	4.0	0.47	2.2	3.5	4.3	5.2	6.9
Phase resistance	(20 °C)	Ω			0.4					1	.2		
Phase inducta	nce	mH			1.0					-	3		
Inertia moment	GD ² /4	kg∙m²	0.56	1.4	2.2	3.2	5.6	0.029	0.56	1.4	2.2	3.2	5.6
(without brake)	J	kgf∙cm∙s²	5.7	14	22	32	57	0.30	5.7	14	22	32	57
Inertia moment	GD ² /4	kg∙m²	0.66	1.7	2.6	3.7	6.6	0.034	0.66	1.7	2.6	3.7	6.6
(with brake)	J	kgf · cm · s ²	6.7	17	26	38	67	0.35	6.7	17	26	38	67
Permissible mome	nt load	N∙m	258				410						
	in iouu	kgf∙m	26.3				41.8	1.8 26.3					
Moment stiffne	ess	N∙m/rad	39.2 × 10 ⁴				37.9×104						
		kgf∙m/arc-min	11.6			11.3	11.6						
One-way positional ac		arc-sec.	50	40	40	40	40	120	50	40	40	40	40
Encoder type	e	Single turn			ADSOI	ute enc		th batte		rea mu	iti-turn		
Encoder resolu	ition	Single-turn Multi-turn *5	2 ¹⁷ (131072) 2 ¹⁶ (65536)										
Output shaft reso	lution	counts/rev	2 ⁽⁰⁵⁵³⁶⁾ 6684672 10616832 13238272 15859712 21102592 1441792 6684672 10616832 13238272 15859					15850712	21102592				
Mass (without b		kg	2.95				5.0					21102002	
Mass (with bra		kg			3.1			5.1			3.1		
Environmental conditions ^{*6}			Operating temperature: 0 to 40 °C/Storage temperature: -20 to 60 °C Operating humidity/storage humidity: 20 to 80 %RH (no condensation) Resistance to vibration: 25 m/s ² (frequency: 10 to 400 Hz) Shock resistance: 300 m/s ^{2 *4} No dust, no metal powder, no corrosive gas, no inflammable gas, no oil mist To be used indoors, no direct sunlight Altitude: less than 1000 m above sea level										
Motor insulation			Insulation resistance: 100 M Ω or more (by DC500 V insulation tester) Dielectric strength: AC1500 V/1 min Insulation class: A										
	ing dire		Can be installed in any direction. Totally enclosed self-cooled type (IP54)										
Protection structure			Iotally	/ enclos	sed self	-cooled	type (I	P54)					

SG/HP

The table shows typical output values of actuators.

*1: Typical characteristics when combined (driven by ideal sine wave) with our drive.

*2: Value after temperature rise and saturation when the 350x350x18 [mm] aluminum heatsink is installed.

*3: Value of phase induced voltage constant multiplied by 3.

*4: For testing conditions, refer to [1-12 Shock resistance] (P1-41) and [1-13 Resistance to vibration] (P1-42). Motor operation is not guaranteed in applications where vibrations and impacts are continuously applied for a long period of time.

*5: The multi-turn detector range is -32768 to 32767.

*6: For details, refer to [3-3 Location and installation] (P3-6).

		Model	SHA32A						
Item			11	51	81	101	121	161	
Recomm	nended l	Drive		REL-230-18	3 / REL-230-3	36 / HA-800[□-6D/E-200		
Mary famous	*1	N∙m	62	281	395	433	459	484	
Max. torque	•	kgf∙m	6.3	28.7	40.3	44.2	46.8	49.4	
Allowable contir	nuous	N∙m	20	92	153	178	178	178	
torque ^{*1*2} kgf·m			2.1	9.4	15.6	18.2	18.2	18.2	
Max. rotational speed ^{*1} rpm			436.4	94.1	59.3	47.5	39.7	29.8	
Torque consta		N ⋅ m/A _{rms}	4.5	21	33	42	50	66	
Torque consta	int '	kgf∙m/A _{rms}	0.46	2.1	3.4	4.2	5.1	6.8	
Max. current	Arms	19	17.3	15.2	13.5	12.2	9.9		
Allowable continuous	current*1*2	Arms	6.0	6.0	6.0	5.7	5.0	4.1	
EMF constan	lt ^{*3}	V/(rpm)	0.51	2.3	3.7	4.7	5.6	7.4	
Phase resistance		Ω			0.3	33			
Phase inducta	nce	mH			1.	4			
Inertia moment	GD ² /4	kg∙m²	0.091	2.0	5.1	8.0	11	20	
(without brake)	J	kgf·cm·s ²	0.93	21	52	81	117	207	
Inertia moment	GD ² /4	kg∙m²	0.11	2.3	5.9	9.2	13	23	
(with brake)	J	kgf · cm · s ²	1.1	24	60	94	135	238	
Permissible mo	ment	N∙m	932 580						
load		kgf∙m	95 59.1						
Moment stiffn	066	N∙m/rad	86.1×10 ⁴ 100 × 10 ⁴						
		kgf • m/arc-min	25.7						
One-way positional ac		arc-sec.	120	50	40	40	40	40	
Encoder typ	е			Absolute en	coder with ba		ed multi-turn		
Encoder resolu	ition	Single-turn			2 ¹⁷ (13				
<u> </u>		Multi-turn *5	2 ¹⁶ (65536)						
Output shaft reso Mass (without b		counts/rev	1441792	6684672	10616832	13238272	15859712	21102592	
Mass (without b Mass (with bra		kg kg	9.4 9.7			<u>5.9</u> 6.2			
Environme	Operating I Resistance Shock resis No dust, no mist To be used Altitude: les	numidity/stor to vibration: stance: 300 r o metal power indoors, no ss than 1000	age humidity 25 m/s ² (free n/s ^{2 *4} der, no corros direct sunligh) m above se	: 20 to 80 % quency: 10 to sive gas, no nt a level	inflammable	ensation) gas, no oil			
Motor insulation			Insulation resistance: 100 M Ω or more (by DC500 V insulation tester) Dielectric strength: AC1500 V/1 min Insulation class: A						
	ng direc			talled in any					
Protect	ion struc	ture	Totally encl	osed self-co	oled type (IP	54)			

*1: Typical characteristics when combined (driven by ideal sine wave) with our drive.

*2: Value after temperature rise and saturation when the 400x400x20 [mm] aluminum heatsink is installed.

*3: Value of phase induced voltage constant multiplied by 3.

*4: For testing conditions, refer to [1-12 Shock resistance] (P1-41) and [1-13 Resistance to vibration] (P1-42). Motor operation is not guaranteed in applications where vibrations and impacts are continuously applied for a long period of time.

*5: The multi-turn detector range is -32768 to 32767.

*6: For details, refer to [3-3 Location and installation] (P3-6).

SG		Model					сПV	40A					
Item		widder	51	81	101	121	161	51	81	101	121	161	
	nended E	Drive					-			IA-800E		-	
NI	*2	N·m 340 560 686 802 841 4 kgf·m 34.7 57.1 70 81.8 85.8 5 N·m 94 158 198 237 317 5 kgf·m 9.6 16.1 20.2 24.2 32.3 5						523	675	738	802	841	
Max. torque	2	kgf∙m	34.7	57.1	70	81.8	85.8	53.4	68.9	75.3	81.8	85.8	
Allowable contin	uous	N∙m	94	158	198	237	317	160	263	330	382	382	
torque*2*3		kgf∙m	9.6	16.1	20.2	24.2	32.3	16.3	26.8	33.7	39	39	
Max. rotational s	peed ^{*2}	rpm	78.4	49.4	39.6	33.1	24.8	78.4	49.4	39.6	33.1	24.8	
Torque consta	nt ^{*2}	N • m/A _{rms}	25	41	51	61	81	25	41	51	61	81	
		kgf∙m/A _{rms}	2.6	4.1	5.2	6.2	8.2	2.6	4.1	5.2	6.2	8.2	
Max. current		Arms	18	18	18	17.9	14.6	26.7	21.8	19.4	17.9	14.6	
Allowable continuous of		Arms	6.0	6.0	6.0	6.0	6.0	9.0	9.0	9.0	8.8	7.2	
EMF constan		V/(rpm)	2.9 4.6 5.7 6.8 9.1 2.9 4.6 5.7 6.8 9.1										
Phase resistance		Ω						19					
Phase inducta		mH	5.0	40	20	20		.2	40	20	20	50	
Inertia moment (without brake)	GD ² /4	kg∙m² kgf∙cm∙s²	5.0 51	13 130	20 202	28 290	50 513	5.0 51	13 130	20 202	28 290	50 513	
, ,		kgr•cm•s- kg∙m²	-		-			-		-			
Inertia moment (with brake)	<u>GD-74</u> J	kgf·cm·s ²	6.1	15	24	34	61	6.1 62	15	24	34	61	
(with blake)	J	N·m	62	157	244	350	619	62 49	157	244	350	619	
Permissible mome	nt load	kgf∙m						+9 6.6					
	N·m/rad						× 10 ⁴						
Moment stiffne	ess	kgf ⋅ m/arc-min						3.2					
One-way positional ac	curacy	arc-sec.	50	40	40	40	40	50	40	40	40	40	
Encoder typ	e			At	osolute	encoder	with ba	attery bu	iffered r	nulti-tur	n r		
Encoder resolu	tion	Single-turn					2 ¹⁷ (13	81072)					
LIICOUEI TESOIU		Multi-turn *6				-	216 (6	5536)	-		-		
Output shaft reso		counts /rev	6684672	10616832	13238272	15859712	21102592		10616832	13238272	15859712	2110259	
Mass (without br		kg						.9					
Mass (with bra	ike)	kg				<u> </u>).7			<u></u>	0.0	
Environme	ntal conc	litions*7	Operating temperature: 0 to 40 °C/Storage temperature: -20 to Operating humidity/storage humidity: 20 to 80 %RH (no conde Resistance to vibration: 25 m/s ² (frequency: 10 to 400 Hz) Shock resistance: 300 m/s ^{2 *5} No dust, no metal powder, no corrosive gas, no inflammable mist To be used indoors, no direct sunlight Altitude: less than 1000 m above sea level							ndensat	ion)		
Motor insulation			Insulation resistance: 100 M Ω or more (by DC500 V insulation tester) Dielectric strength: AC1500 V/1 min Insulation class: A										
	ng direct		Can be installed in any direction. Totally enclosed self-cooled type (IP54)										
Protection structure			Iotally	/ enclos	ed self-	cooled t	ype (IP	54)					

*1: If a HA-800 -6D/E driver is combined with a SHA40A actuator, the maximum torque and allowable continuous torque are limited.

*2: Typical characteristics when combined (driven by ideal sine wave) with our drivers.

*3: Value after temperature rise and saturation when the 500x500x25 [mm] aluminum heatsink is installed.

*4: Value of phase induced voltage constant multiplied by 3.

*5: For testing conditions, refer to [1-12 Shock resistance] (P1-41) and [1-13 Resistance to vibration] (P1-42). Motor operation is not guaranteed in applications where vibrations and impacts are continuously applied for a long period of time.

*6: The multi-turn detector range is -32768 to 32767.

*7: For details, refer to [3-3 Location and installation] (P3-6).

SG		Model			SHA45A							
Item			51	81	101	121	161					
Comb	oined dri	ve		HA	-800□-24D/E-	200						
	*1	N∙m	650	918	982	1070	1147					
Max. torque	•	kgf∙m	66.3	93.6	100	109	117					
Allowable contir	nuous	N∙m	174	290	363	437	523					
torque ^{*1*2}		kgf∙m	17.7	29.6	37.0	44.6	53.3					
Max. rotational s	peed ^{*1}	rpm	74.5	46.9	37.6	31.4	23.6					
Torque consta	nt*1	N∙m/A _{rms}	25	41	51	61	81					
Torque consta	in t	kgf ∙ m/A _{rms}	2.6	4.1	5.2	6.2	8.2					
Max. current	t ^{*1}	Arms	36.5	29.9	25.9	24.5	19.3					
Allowable continuous	current ^{*1*2}	Arms	10.0 10.0 10.0 9									
EMF constan	1t*3	V/(rpm)	2.9 4.6 5.7 6.8									
Phase resistance	(20 °C)	Ω	0.19									
Phase inducta	nce	mH	1.2									
Inertia moment	GD ² /4	kg∙m²	6.8	17	27	38	68					
(without brake)	J	kgf·cm·s ²	69	175	272	390	690					
Inertia moment	GD ² /4	kg∙m²	7.9	20	31	45	79					
(with brake)	J	kgf·cm·s ²	81	204	316	454	804					
Permissible mome	nt load	N∙m			1127							
Fermissible mome	int ioau	kgf∙m			115							
Moment stiffn		N∙m/rad			257 × 10 ⁴							
		kgf • m/arc-min			76.3							
One-way positional ac		arc-sec.	50	40	40	40	40					
Encoder typ	e		At		er with battery b	uffered multi-tu	Irn					
Encoder resolu	ition	Single-turn detector			2 ¹⁷ (131072)							
		Multi-turn detector*5			2 ¹⁶ (65536)							
Output shaft reso		counts /rev	6684672	10616832	13238272	15859712	21102592					
Mass (without b Mass (with bra		kg kg			<u>12.4</u> 13.2							
Environme		ditions'6	 Operating temperature: 0 to 40 °C/Storage temperature: -20 to 60 Operating humidity/storage humidity: 20 to 80 %RH (no condensat Resistance to vibration: 25 m/s² (frequency: 10 to 400 Hz) Shock resistance: 300 m/s^{2 *4} No dust, no metal powder, no corrosive gas, no inflammable gas oil mist To be used indoors, no direct sunlight Altitude: less than 1000 m above sea level Insulation resistance: 100 MΩ or more (by DC500 V insulation tested Dielectric strength: AC1500 V/1 min 									
Mounti	ng direc	tion	Insulation cla Can be instal	ss: A led in any dired	ction.							
Protect	ion struc	ture	Totally enclos	sed self-cooled	type (IP54)							

SG

The table shows typical output values of actuators.

*1: Typical characteristics when combined (driven by ideal sine wave) with our drivers.

*2: Value after temperature rise and saturation when the 500×500×25 [mm] aluminum heatsink is installed.

*3: Value of phase induced voltage constant multiplied by 3.

*4: For testing conditions, refer to [1-12 Shock resistance] (P1-41) and [1-13 Resistance to vibration] (P1-42). Motor operation is not guaranteed in applications where vibrations and impacts are continuously applied for a long period of time.

*5: The multi-turn detector range is -32768 to 32767.

*6: For details, refer to [3-3 Location and installation] (P3-6).

SG		Model		SHA	58A			SHA	65A				
Item		Model	81	101	121	161	81	101	121	161			
	bined driv	ver		IA-800□-		-	-	IA-800□-		-			
	.*1	N∙m	1924	2067	2236	2392	2400	2990	3263	3419			
Max. torque) '	kgf∙m	196	211	228	244	245	305	333	349			
All	1 *1*2	N∙m	714	905	969	969	921	1149	1236	1236			
Allowable continuous	torque 12	kgf∙m	73	92	99	99	94	117	126	126			
Max. rotational	speed ^{*1}	rpm	37.0	29.7	24.8	18.6	34.6	27.7	23.1	17.4			
Terrere	4*1	N • m/A _{rms}	54	68	81	108	54	68	81	108			
Torque const	ant	kgf ⋅ m/A _{rms}	5.5	6.9	8.3	11.0	5.5	6.9	8.3	11.0			
Max. curren	t*1	Arms	45	39	36	30	55	55	51	41			
Allowable continuous	current*1*2	Arms	17.7	17.8	16.4	13.4	22.0	21.9	20.1	16.3			
EMF consta		V/(rpm)	6.1	7.6	9.1	12.1	6.1	7.6	9.1	12.1			
Phase resistance	(20 °C)	Ω		0.0	28			0.0)28				
Phase induct	· /	mH	0.29					0.2	29				
Inertia moment	GD ² /4	kg∙m²	96	149	214	379	110	171	245	433			
(without brake)	J	kgf∙cm∙s²	980	1520	2180	3870	1120	1740	2500	4420			
Inertia moment	GD ² /4	kg∙m²	106	165	237	420	120	187	268	475			
(with brake)	J	kgf∙cm∙s²	1090	1690	2420	4290	1230	1910	2740	4850			
Dermissible mem	ant load	N∙m		21	80			27	40				
Permissible mom	ent load	kgf∙m	222 280						30				
Moment of the		N ⋅ m/rad		531	× 104			741	× 10 ⁴				
Moment stiffr	less	kgf ⋅ m/arc-min		1:	58		220						
One-way positional a		arc-sec.	40	40	40	40	40	40	40	40			
Encoder ty	pe			Abso	ute encoc			fered mult	ti-turn				
Encoder resol	ution	Single-turn detector				2 ¹⁷ (13							
		Multi-turn detector*5		1		2 ¹⁶ (65							
Output shaft res		counts/rev	10616832	13238272	15859712	21102592	10616832	13238272	15859712	2110259			
Mass (without b Mass (with br		kg		29	0.5				7.5 0				
wass (with br	anej	kg	Oporativ		_	10 °C/€	torago tor	4 mperature	•	0°C			
Environme	ental cond	ditions ^{*6}	Operating humidity/storage humidity: 20 to 80 %RH (no cond Resistance to vibration: 25 m/s ² (frequency: 10 to 400 Hz) Shock resistance: 300 m/s ^{2 *4} No dust, no metal powder, no corrosive gas, no inflammable mist To be used indoors, no direct sunlight Altitude: less than 1000 m above sea level						condens Iz)	ation)			
	r insulatio		Insulation resistance: 100 M Ω or more (by DC500 V insulation tester) Dielectric strength: AC1500 V/1 min Insulation class: A										
	ing direct		Can be installed in any direction.										
Protection structure			Totally e	enclosed s	Totally enclosed self-cooled type (IP54)								

*1: Typical characteristics when combined (driven by ideal sine wave) with our drivers.

*2: Value after temperature rise and saturation when the 650x650x30 [mm] aluminum heatsink is installed.

*3: Value of phase induced voltage constant multiplied by 3.

*4: For testing conditions, refer to [1-12 Shock resistance] (P1-41) and [1-13 Resistance to vibration] (P1-42). Motor operation is not guaranteed in applications where vibrations and impacts are continuously applied for a long period of time.

*5: The multi-turn detector range is -32768 to 32767.

*6: For details, refer to [3-3 Location and installation] (P3-6).

-	Model			SHA20A									
		50	80	100	120	160							
mended D	Drive		REL-230-	18 / HA-800□-	3D/E-200								
*1	N∙m	73	96	107	113	120							
e '	kgf∙m	7.4	9.8	10.9	11.5	12.2							
40.000 \$410	N∙m	21	35	43	48	48							
torque ^{11/2}	kgf∙m	2.1	3.6	4.4	4.9	4.9							
speed ^{*1}	rpm	120	75	60	50	37.5							
-	N∙m/A _{rms}	16	26	33	39	53							
	kgf · m/A _{rms}	1.7	2.7	3.4	4.0	5.4							
t*1	Arms	6.1	5.0	4.6	4.1	3.4							
current*1*2	Arms	2.1	2.1	2.1	2.0	1.7							
	V/(rpm)	1.8	2.9	3.7	4.4	5.9							
(20 °C)	Ω	·	·	1.4		<u> </u>							
	mH			2.5									
GD ² /4	kg∙m²	0.21	0.53	0.82	1.2	2.1							
J	kgf·cm·s ²	2.1	5.4	8.0	12	22							
GD ² /4	kg∙m²	0.23	0.60	0.94	1.3	2.4							
J	kgf·cm·s ²	2.4	6.1	9.6	14	24							
-	N∙m			187		<u>·</u>							
ent load	kgf∙m			19.1									
055	N∙m/rad	1		25.2 × 10 ⁴									
535	kgf∙m/arc-min		7.5										
iccuracy	arc-sec.	60	50	50	50	50							
-	arc-sec.			±5		- 							
	arc-sec.	75	30	<u>30</u>	30	30							
	Single turn life	Α			unered multi-tu	111							
ution	•	1											
		6550000			15700010	20071							
		0003600	10485760		15728640	2097152							
,		L											
		Operating temperature: 0 to 40 °C/Storage temperature: -20 to 60 °C Operating humidity/storage humidity: 20 to 80 %RH (no condensation) Resistance to vibration: 25 m/s ² (frequency: 10 to 400 Hz) Shock resistance: 300 m/s ^{2*4} No dust, no metal powder, no corrosive gas, no inflammable gas, no oil mi To be used indoors, no direct sunlight Altitude: less than 1000 m above sea level											
r insulatio	on	Insulation resis Dielectric stren	stance: 100 MΩ o ngth: AC1500 V/1	or more (by DC50	00 V insulation	tester)							
				n									
ion struc			ed self-cooled typ										
	e ^{*1} s torque ^{*1*2} speed ^{*1} ant ^{*1} ant ^{*1} current ^{*1*2} nt ^{*3} (20 °C) ance GD ² /4 J GD ² /4 J GD ² /4 J ent load esss accuracy ity accuracy ity accuracy pe ution olution orake) ake) ental conco r insulatio ing direct	kgf·mkgf·mstorque'1'2kgf·mspeed'1rpmant'1N·m/Armskgf·m/Armskgf·m/Armskgf·m/Armskgf·m/Armskgf·m/Armskgf·m/Armsti'1Armsmt'1Armscurrent'1'2Armscurrent'1'2Armsmt'3V/(rpm)colspan="2">colspan="2">ancemHGD2/4kgf·cm·s²GD2/4kgf·cm·s²GD2/4kgf·mhorm/radkgf·m/arc-miniccuracyarc-sec.ityarc-sec.ityarc-sec.ityarc-sec.ityarc-sec.ityarc-sec.ityarc-sec.ityarc-sec.ityarc-sec.ityarc-sec.ityity <td>mended DriveN·m73e^{1}N·m73kgf·m7.4storque'''2N·m21kgf·m2.1speed''rpm120ant'1N·m/Arms16kgf·m/Arms1.7at'1Arms6.1current'''2Arms2.1ant'3V/(rpm)1.8c(20 °C)ΩancemHGD2/4kg·m²0.21Jkgf·cm·s²2.1GD2/4kg·m²0.23Jkgf·cm·s²2.4ent loadN·m/radkgf·maccuracyarc-sec.60ityarc-sec.75peArmsolutioncounts/rev6553600orake)kgake)kging directionCan be installed in the set of the</td> <td>Mended Drive REL-230- e¹ N·m 73 96 kgf·m 7.4 9.8 storque'''2 N·m 21 35 speed'' rpm 120 75 ant'' N·m/Arms 16 26 kgf·m/Arms 1.7 2.7 it' Arms 6.1 5.0 current''2 Arms 2.1 2.1 it' Arms 6.1 5.0 current''2 Arms 2.1 2.1 it' Arms 2.1 3.1 it' Arms 2.1 3.4 GD'/4 kg·m² 0.23 0.60 j kgf·marc-min 3.0 3.0 itty arc-sec. 60 50</td> <td>mended Drive REL-230-18 / HA-800□- e⁻¹ N·m 73 96 107 kgf·m 7.4 9.8 10.9 s torque^{-1/2} N·m 21 35 43 speed⁻¹ rpm 120 75 60 ant^{*1} N·m/Arms 16 26 33 it^{*1} Arms 6.1 5.0 4.6 current^{*1/2} Arms 2.1 2.1 2.1 it^{*1} Arms 6.1 5.0 4.6 current^{*1/2} Arms 2.1 2.1 2.1 it^{*1} Arms 6.1 5.0 4.6 current^{*1/2} Arms 2.1 2.1 2.1 ance mH 2.5 0 0.82 3.7 ic 20 °C) Ω 1.4 3.6 0.82 J kgf·m?m² 0.23 0.60 0.94 1.4 ance mH 187 8.0 <t< td=""><td>mended Drive REL-230-18 / HA-800□-3D/E-200 e⁻¹ N·m 73 96 107 113 kgf·m 7.4 9.8 10.9 11.5 storque¹¹² N·m 21 35 43 48 kgf·m 2.1 3.6 4.4 4.9 speed¹¹ rpm 120 75 60 50 nt³ kgf·m/Arms 1.7 2.7 3.4 4.0 tt¹ Arms 6.1 5.0 4.6 4.1 current¹¹² Arms 2.1 2.1 2.1 2.0 nt³ V/(rpm) 1.8 2.9 3.7 4.4 (20 °C) Q 1.4 30 12 GD²/4 kg·m² 0.21 0.53 0.82 1.2 J kgf·cm·s² 2.1 5.4 8.0 12 GD²/4 kg·m² 0.23 0.60 0.94 1.3 J kgf·</td></t<></td>	mended DriveN·m73 e^{1} N·m73kgf·m7.4storque'''2N·m21kgf·m2.1speed''rpm120ant'1N·m/Arms16kgf·m/Arms1.7at'1Arms6.1current'''2Arms2.1ant'3V/(rpm)1.8c(20 °C) Ω ancemHGD2/4kg·m²0.21Jkgf·cm·s²2.1GD2/4kg·m²0.23Jkgf·cm·s²2.4ent loadN·m/radkgf·maccuracyarc-sec.60ityarc-sec.75peArmsolutioncounts/rev6553600orake)kgake)kging directionCan be installed in the set of the	Mended Drive REL-230- e ¹ N·m 73 96 kgf·m 7.4 9.8 storque'''2 N·m 21 35 speed'' rpm 120 75 ant'' N·m/Arms 16 26 kgf·m/Arms 1.7 2.7 it' Arms 6.1 5.0 current''2 Arms 2.1 2.1 it' Arms 6.1 5.0 current''2 Arms 2.1 2.1 it' Arms 2.1 3.1 it' Arms 2.1 3.4 GD'/4 kg·m² 0.23 0.60 j kgf·marc-min 3.0 3.0 itty arc-sec. 60 50	mended Drive REL-230-18 / HA-800□- e ⁻¹ N·m 73 96 107 kgf·m 7.4 9.8 10.9 s torque ^{-1/2} N·m 21 35 43 speed ⁻¹ rpm 120 75 60 ant ^{*1} N·m/Arms 16 26 33 it ^{*1} Arms 6.1 5.0 4.6 current ^{*1/2} Arms 2.1 2.1 2.1 it ^{*1} Arms 6.1 5.0 4.6 current ^{*1/2} Arms 2.1 2.1 2.1 it ^{*1} Arms 6.1 5.0 4.6 current ^{*1/2} Arms 2.1 2.1 2.1 ance mH 2.5 0 0.82 3.7 ic 20 °C) Ω 1.4 3.6 0.82 J kgf·m?m ² 0.23 0.60 0.94 1.4 ance mH 187 8.0 <t< td=""><td>mended Drive REL-230-18 / HA-800□-3D/E-200 e⁻¹ N·m 73 96 107 113 kgf·m 7.4 9.8 10.9 11.5 storque¹¹² N·m 21 35 43 48 kgf·m 2.1 3.6 4.4 4.9 speed¹¹ rpm 120 75 60 50 nt³ kgf·m/Arms 1.7 2.7 3.4 4.0 tt¹ Arms 6.1 5.0 4.6 4.1 current¹¹² Arms 2.1 2.1 2.1 2.0 nt³ V/(rpm) 1.8 2.9 3.7 4.4 (20 °C) Q 1.4 30 12 GD²/4 kg·m² 0.21 0.53 0.82 1.2 J kgf·cm·s² 2.1 5.4 8.0 12 GD²/4 kg·m² 0.23 0.60 0.94 1.3 J kgf·</td></t<>	mended Drive REL-230-18 / HA-800□-3D/E-200 e ⁻¹ N·m 73 96 107 113 kgf·m 7.4 9.8 10.9 11.5 storque ¹¹² N·m 21 35 43 48 kgf·m 2.1 3.6 4.4 4.9 speed ¹¹ rpm 120 75 60 50 nt ³ kgf·m/Arms 1.7 2.7 3.4 4.0 tt ¹ Arms 6.1 5.0 4.6 4.1 current ¹¹² Arms 2.1 2.1 2.1 2.0 nt ³ V/(rpm) 1.8 2.9 3.7 4.4 (20 °C) Q 1.4 30 12 GD ² /4 kg·m ² 0.21 0.53 0.82 1.2 J kgf·cm·s ² 2.1 5.4 8.0 12 GD ² /4 kg·m ² 0.23 0.60 0.94 1.3 J kgf·							

*1: Typical characteristics when combined (driven by ideal sine wave) with our drivers.

*2: Value after temperature rise and saturation when the 320x320x16 [mm] aluminum heatsink is installed.

*3: Value of phase induced voltage constant multiplied by 3.

*4: For testing conditions, refer to [1-12 Shock resistance] (P1-41) and [1-13 Resistance to vibration] (P1-42). Motor operation is not guaranteed in applications where vibrations and impacts are continuously applied for a long period of time.

*5: The multi-turn detector range is -32768 to 32767.

*6: For details, refer to [3-3 Location and installation] (P3-6).

CG

CG										•		
	Model	(1)4	otor inp	SHA25			(1)4		SHA25/ out volt			
Item		50	80	100	120	160	50	80	100	age 200	160	
			EL-230		-				-18 / RE	-		
Combined dri	ve					50			0□-3D			
Max. torque ^{*1}	N∙m	127	178	204	217	229	127	178	204	217	229	
Wax. torque	kgf∙m	13	18.2	20.8	22.1	23.4	13	18.2	20.8	22.1	23.4	
Allowable continuous torque*1*2	N∙m	34	57	72	81	81	40	66	81	81	81	
	kgf∙m	3.5	5.8	7.3	8.2	8.2	4.1	6.8	8.2	8.2	8.2	
Max. rotational speed ^{*1}	rpm	96	60	48	40	30	112	70	56	46.7	35	
Torque constant ^{*1}	N∙m/A _{rms}	10.9	17.7	22	27	35	19	31	38	46	61	
Torque constant	kgf ∙ m/A _{rms}	1.1	1.8	2.3	2.7	3.6	1.9	3.1	3.9	4.7	6.3	
Max. current*1	Arms	15.1	13.2	12.2	11.0	9.0	8.7	7.6	7.0	6.3	5.2	
Allowable continuous current*1*2	Arms	4.7	4.7	4.7	4.5	3.7	3.0	3.0	3.0	2.6	2.1	
EMF constant ^{*3}	V/(rpm)	1.2	2.0	2.5	3.0	4.0	2.1	3.4	4.3	5.2	6.9	
Phase resistance (20 °C)	Ω			0.4					1.2			
Phase inductance	mH			1.0					3.0			
Inertia moment GD ² /4	kg∙m²	0.50	1.3	2.0	2.9	5.1	0.50	1.3	2.0	2.9	5.1	
(without brake) J	kgf · cm · s ²	5.1	13	20	29	52	5.1	13	20	29	52	
Inertia moment GD ² /4	kg·m²	0.60	1.5	2.4	3.4	6.1	0.60	1.5	2.4	3.4	6.1	
(with brake) J	kgf·cm·s ²	6.1	16	24	35	62	6.1	16	24	35	62	
Permissible moment load	<u>N∙m</u>						58					
	kgf∙m						<u>5.3</u>					
Moment stiffness	N∙m/rad	39.2 × 10 ⁴										
	kgf·m/arc-min				-		.6	1	1	r	1	
One-way positional accuracy	arc-sec.	50	40	40	40	40	50	40	40	40	40	
Repeatability	arc-sec.						:5			1		
Bi-directional repeatability	arc-sec.	60	25	25	25	25	60	25	25	25	25	
Encoder type				Absolut	e encod	er with b	attery bu	iffered m	ulti-turn			
Encoder resolution	Single-turn					2 ¹⁷ (13	81072)					
	Multi-turn *5					216 (6	5536)					
Output shaft resolution	counts/rev	6553600	10485760	13107200	15728640			10485760	13107200	15728640	20971520	
Mass (without brake)	kg						95					
Mass (with brake)	kg				<u>.</u>	4				0-		
Environmental con	ditions ^{*6}	Operating temperature: 0 to 40 °C/Storage temperature: -20 to 60 °C Operating humidity/storage humidity: 20 to 80 %RH (no condensation) Resistance to vibration: 25 m/s ² (frequency: 10 to 400 Hz) Shock resistance: 300 m/s ^{2 *4} No dust, no metal powder, no corrosive gas, no inflammable gas, no oil mis To be used indoors, no direct sunlight Altitude: less than 1000 m above sea level						tion)				
Motor insulation			Insulation resistance: 100 M Ω or more (by DC500 V insulation tester) Dielectric strength: AC1500 V/1 min Insulation class: A									
Mounting direc		Can be installed in any direction										
Protection struc			enclosed	d self-co	oled type	e (IP54)						
The table shows typical or	utput values of a	otuator	c									

*1: Typical characteristics when combined with our drives.

*2: Value after temperature rise and saturation when the 350x350x18 [mm] aluminum heatsink is installed.

*3: Value of phase induced voltage constant multiplied by 3.

*4: For testing conditions, refer to [1-12 Shock resistance] (P1-41) and [1-13 Resistance to vibration] (P1-42). Motor operation is not guaranteed in applications where vibrations and impacts are continuously applied for a long period of time.

*5: The multi-turn detector range is -32768 to 32767.

*6: For details, refer to [3-3 Location and installation] (P3-6).

Item Comb Max. torque*					SHA32A						
			50	80	100	120	160				
Max torque*	oined dr	ive	RE	L-230-18 / RE	L-230-36 / HA	-800□-6D/E-2	200				
May torduo	.1	N∙m	281	395	433	459	484				
wax. torque		kgf∙m	28.7	40.3	44.2	46.8	49.4				
Allowable continu	Jous	N∙m	90	151	178	178	178				
torque*1*2		kgf∙m	9.2	15.4	18.2	18.2	18.2				
Max. rotational sp	beed ^{*1}	rpm	96	60	48	40	30				
Tanana aanata		N ⋅ m/A _{rms}	20	33	41	49	66				
Torque consta	nt '	kgf∙m/A _{rms}	2.1	3.4	4.2	5.0	6.7				
Max. current	*1	Arms	17.7	15.4	13.7	12.2	10				
Allowable continuous co	urrent ^{*1*2}	Arms	6.0 6.0 5.7 5.0 4.1								
EMF constant	t ^{*3}	V/(rpm)	2.3	3.7	4.6	5.5	7.4				
Phase resistance (20 °C)	Ω			0.33						
Phase inductar	nce	mH	1.4								
Inertia moment	GD ² /4	kg∙m²	1.7	4.3	6.7	9.7	17				
(without brake)	J	kgf∙cm∙s²	17	44	68	99	175				
Inertia moment	GD ² /4	kg∙m²	2.0	5.1	7.9	11	20				
(with brake)	J	kgf·cm·s ²	20	52	81	116	207				
		N∙m			580						
Permissible mome	nt load	kgf∙m			59.2						
		N∙m/rad			100×10^{4}						
Moment stiffne	ess	kqf • m/arc-min	nin 29.6								
One-way positional a	ccuracy	arc-sec.	40	30	30	30	30				
Repeatability		arc-sec.		•	±4						
Bi-directional repea	tability	arc-sec.	60	25	25	25	25				
Encoder type	е		A	bsolute encode	er with battery bu	uffered multi-tu	'n				
Encoder resolu	tion	Single-turn		2	2 ¹⁷ (131072)						
Littodel resolu	lion	Multi-turn *5			2 ¹⁶ (65536)						
Output shaft reso	lution	counts/rev	6553600	10485760	13107200	15728640	20971520				
Mass (without b	rake)	kg			7.7						
Mass (with bra	ke)	kg			8.0						
Environme			Operating temperature: 0 to 40 °C/Storage temperature: -20 to 60 °C Operating humidity/storage humidity: 20 to 80 %RH (no condensation) Resistance to vibration: 25 m/s ² (frequency: 10 to 400 Hz) Shock resistance: 300 m/s ^{2 *4} No dust, no metal powder, no corrosive gas, no inflammable gas, no oil To be used indoors, no direct sunlight Altitude: less than 1000 m above sea level								
	insulat		Insulation resi Dielectric stre Insulation class	istance: 100 MΩ ngth: AC1500 \ ss: A	Ω or more (by D0 //1 min	C500 V insulati	on tester)				
	ng dired			ed in any direct							
Protecti he table shows typi				ed self-cooled t	ype (1P54)						

CG

*1: Typical characteristics when combined (driven by ideal sine wave) with our drivers.

*2: Value after temperature rise and saturation when the 400×400×20 [mm] aluminum heatsink is installed.

*3: Value of phase induced voltage constant multiplied by 3.

*4: For testing conditions, refer to [1-12 Shock resistance] (P1-41) and [1-13 Resistance to vibration] (P1-42). Motor operation is not guaranteed in applications where vibrations and impacts are continuously applied for a long period of time.

*5: The multi-turn detector range is -32768 to 32767.

*6: For details, refer to [3-3 Location and installation] (P3-6).

CG														
		Model		-			SHA	40A		-		-		
Item			50	80	100	120	160	50	80	100	120	160		
Recom	nended	l drive	REL-	230 / H	A-800E]-6D/E·	-200 ^{*1}	REL-	230 / H	A-800E]-24D/I	E-200		
Max. torque	*2	N∙m	333	548	686	802	841	523	675	738	802	841		
Max. torque		kgf∙m	34.0	55.9	70.0	81.8	85.8	53.4	68.9	75.3	81.8	85.8		
Allowable continuous		N∙m	92	156	196	235	315	157	260	327	382	382		
Anowabic continuous	lorque	kgf∙m	9.4	15.9	20.0	24.0	32.1	16.0	26.5	33.3	39	39		
Max. rotational s	peed ^{*2}	rpm	80	50	40	33.3	25	80	50	40	33.3	25		
Torque consta	n+*2	N∙m/A	25	40	50	60	80	25	40	50	60	80		
Torque consta	IIIL	kgf∙m/A	2.5	4.1	5.1	6.1	8.2	2.5	4.1	5.1	6.1	8.2		
Max. current	t ^{*2}	Α	18	18	18	17.6	14.3	27.2	22	19.6	18	14.7		
Allowable continuous of	current*2*3	Α	6.0	6.0	6.0	6.0	6.0	9.0	9.0	9.0	8.8	7.2		
EMF constan	1t ^{*4}	V/(rpm)	2.8	4.5	5.6	6.7	9.0	2.8	4.5	5.6	6.7	9.0		
Phase resistance	(20°C)	Ω					0.	19						
Phase inducta	nce	mH					1	.2	-			-		
Inertia moment	GD ² /4	kg∙m²	4.8	12	19	27	49	4.8	12	19	27	49		
(without brake)	J	kgf∙cm∙s²	49	124	194	280	497	49	124	194	280	497		
Inertia moment	GD ² /4	kg∙m²	5.8	15	23	33	59	5.8	15	23	33	59		
(with brake)	J	kgf•cm•s²	59	150	235	338	601	59	150	235	338	601		
Permissible mome	ntload	N∙m					84	49						
remissible mome	ni ioau	kgf∙m					86	6.6						
Moment stiffn	066	N∙m/rad					1793	× 10 ⁴						
Moment Stim	033	kgf·m/arc-min			-	-		3.2	-			-		
One-way positional a		arc-sec.	40	30	30	30	30	40	30	30	30	30		
Repeatabilit	-	arc-sec.						:4	r			r		
Bi-directional repea		arc-sec.	50	20	20	20	20	50	20	20	20	20		
Encoder typ	e				Absolute		er with b		uffered n	nulti-turn)			
Encoder resolu	ution	Single-turn						31072)						
0 1 1 1		Multi-turn *6						5536)						
Output shaft reso Mass (without b		counts/rev	6553600	10485760	13107200	15728640		6553600 3.0	10485760	13107200	15728640	20971520		
Mass (with bra		kg kg						3.0 3.8						
Environme			Operating temperature: 0 to 40 °C/Storage temperature: -20 to 60 °C Operating humidity/storage humidity: 20 to 80 %RH (no condensation) Resistance to vibration: 25 m/s ² (frequency: 10 to 400 Hz) Shock resistance: 300 m/s ^{2 *5} No dust, no metal powder, no corrosive gas, no inflammable gas, no oil mi To be used indoors, no direct sunlight Altitude: less than 1000 m above sea level						mist					
	Motor insulation				Insulation resistance: 100 M Ω or more (by DC500 V insulation tester) Dielectric strength: AC1500 V/1 min Insulation class: A									
	ing dire		Can be installed in any direction. Totally enclosed self-cooled type (IP54)											
Protect			,		d self-co	poled typ	be (IP54))						
The table shows t	vnical o	utout values of ac	tuators											

*1: If a HA-800 □ -6D/E driver is combined with a SHA40A actuator, the maximum torque and allowable continuous torque are limited.

*2: Typical characteristics when combined (driven by ideal sine wave) with our drivers.

*3: Value after temperature rise and saturation when the 500x500x25 [mm] aluminum radiation plate is installed.

*4: Value of phase induced voltage constant multiplied by 3.

*5: For testing conditions, refer to [1-12 Shock resistance] (P1-41) and [1-13 Resistance to vibration] (P1-42). Motor operation is not guaranteed in applications where vibrations and impacts are continuously applied for a long period of time.

*6: The multi-turn detector range is -32768 to 32767.

*7: For details, refer to [3-3 Location and installation] (P3-6).

1-5 Motor shaft brake

The brake is used to hold the motor shaft in place when the power is turned off. With smaller sizes (SHA25A, 32A), the actuator's built-in circuit controls the voltage supplied to the brake in order to reduce the power consumption while the brake is actuated.

Be sure to use a DC power supply having proper brake excitation voltage and capable of outputting enough current for the brake actuation (release).

Specifications

SG/HP

ltem	Model			SHA20A			
nem		51	81	101	121	161	
Туре				citation ac ower-savir			
Brake excitation voltage	v		DC24 V ±	: 10 % (no	polarity)*1		
Current consumption during suction (at 20 °C)	Arms			0.37			
Current consumption during holding (at 20 °C)	Arms	Same as current consumption during suction					
Holding torque*3	N∙m	31	49	61	73	97	
Holding torque ^{*3}	kgf∙m	3.1	5.0	6.2	7.4	9.9	
Inertia moment*3	kg∙m² (GD²/4)	0.26	0.65	1.0	1.4	2.6	
(Actuator total) (with brake)	kgf⋅cm⋅s² (J)	2.7	6.6	10	15	26	
Mass (with brake) ^{*4}	kg	2.1					
Allowable number of normal brakings*5		100000 times					
Allowable number of emergency stops*6		200 times					

Item	Model			SHA	25A			SHA32A					
nem		11	51	81	101	121	161	11	51	81	101	121	161
Туре				Dry r	non-excit	ation act	tuation ty	/pe (with	power-s	aving co	ntrol)		
Brake excitation voltage	V					DC24	V ± 10 %	% (no po	larity)*1				
Current consumption during suction (at 20 °C)	A _{rms}			0.	8 ^{*2}					0.	8 ^{*2}		
Current consumption during holding (at 20 °C)	A _{rms}		0.3 0.3										
Holding torgue ^{*3}	N∙m	11	51	81	101	121	161	22	102	162	202	242	322
Holding torque *	kgf∙m	1.1	5.2	8.3	10	12	16	2.2	10	17	21	25	33
Inertia moment*3	kg∙m² (GD²/4)	0.034	0.66	1.7	2.6	3.7	6.6	1.7	2.3	5.9	9.2	13	23
(Actuator total) (with brake)	kgf⋅cm⋅s² (J)	0.35	6.7	17	26	38	67	17	24	60	94	135	238
Mass (with brake)*4	kg	5.1 3.1 9.7 6.2											
Allowable number of normal brakings* ⁵		100000 times											
Allowable number of emergency stops*6		200 times											

Sold & Serviced by:

SG

	Model			SHA40A			SHA45A					
Item		51	81	101	121	161	51	81	101	121	161	
Туре			Dr	y non-exc	itation act	uation typ	e (without	power-sa	ving contr	ol)		
Brake excitation voltage	v				DC2	4 V ± 10 %	6 (no pola	rity) ^{*1}				
Current consumption during suction (at 20 °C)	A _{rms}					0	.7					
Current consumption during holding (at 20 °C)	Arms		Same as current consumption during suction									
Holding torque*3	N۰m	204	324	404	484	644	204	324	404	484	644	
Holding torque -	kgf∙m	21	33	41	49	66	21	33	41	49	66	
Inertia moment ^{*3} (Actuator total)	kg∙m² (GD²/4)	6.1	15	24	34	61	7.9	20	31	45	79	
(With brake)	kgf⋅cm⋅s² (J)	62	157	244	350	619	81	204	316	454	804	
Mass (with brake)*4	kg	10.7 13.2										
Allowable number of normal brakings* ⁵		100000 times										
Allowable number of emergency stops ^{*6}		200 times										

Li contra di la co	Model		SHA	58A			SHA	65A	
Item		81	101	121	161	81	101	121	161
Туре			Dry no	n-excitation a	actuation typ	e (without po	wer-saving	control)	
Brake excitation voltage	٧			D	C24 V ± 10 %	6 (no polarity	') ^{*1}		
Current consumption during suction (at 20 °C)	A _{rms}				0.	.9			
Current consumption during holding (at 20 °C)	A _{rms}			Same as	current consi	umption duri	ng suction		
Helding tergue*3	N∙m	1220	1520	1820	2420	1220	1520	1820	2420
Holding torque ^{*3}	kgf∙m	124	155	185	246	124	155	185	246
Inertia moment ^{*3} (Actuator total)	kg∙m² (GD²/4)	106	165	237	420	120	187	268	475
(With brake)	kgf⋅cm⋅s² (J)	1090 1690 2420 4290 1230 1910 2740							
Mass (with brake)*4	kg	32 40							
Allowable number of normal brakings' ⁵		100000 times							
Allowable number of emergency stops ^{*6}		200 times							

CG

Item	Model	SHA20A					SHA25A						
item		50	80	100	120	160	50	80	100	120	160		
Туре		Dry non-excitation actuation type (without power-saving control)						Dry non-excitation actuation type (with power-saving control)					
Brake excitation voltage	ν	DC24 V ± 10 %(no polarity) ^{*1}											
Current consumption during suction (at 20 °C)	Arms	0.37					0.8 *2						
Current consumption during holding (at 20 °C)	Arms	Same as current consumption during suction					0.3						
Holding torque ^{*3}	N∙m	30	48	60	72	96	50	80	100	120	160		
	kgf∙m	3.1	4.9	6.1	7.3	9.8	5.1	8.2	10	12	16		
Inertia moment ^{*3} (Actuator total) (With brake)	kg∙m² (GD²/4)	0.23	0.6	0.94	1.3	2.4	0.60	1.5	2.4	3.4	6.1		
	kgf⋅cm⋅s² (J)	2.4	6.1	9.6	14	24	6.1	16	24	35	62		
Mass (with brake)*4	kg	2.7					4.1						
Allowable number of normal brakings ^{*5}		100000 times											
Allowable number of emergency stops ^{*6}		200 times											

Item	Model	SHA32A				SHA40A						
item		50	80	100	120	160	50	80	100	120	160	
Туре		Dry non-excitation actuation type (with power-saving control)					Dry non-excitation actuation type (without power-saving control)					
Brake excitation voltage	v	DC24 V ± 10 %(no polarity) ^{*1}										
Current consumption during suction (at 20 °C)	Arms	0.8 *2					0.7					
Current consumption during holding (at 20 °C)	Arms	0.3					Same as current consumption during suction					
Holding torque ^{*3}	N∙m	100	160	200	240	320	200	320	400	480	640	
	kgf∙m	10	16	20	24	33	20	33	41	49	65	
Inertia moment ^{*3} (Actuator total) (With brake)	kg∙m² (GD²/4)	2.0	5.1	7.9	11	20	5.8	15	23	33	59	
	kgf⋅cm⋅s² (J)	20	52	81	116	207	59	150	235	338	601	
Mass (with brake)*4	kg	8.0					13.8					
Allowable number of normal brakings ^{*5}		100000 times										
Allowable number of emergency stops ^{*6}		200 times										

*1: Power supply is user's responsibility. Use a power supply capable of outputting enough current consumption during suction for the brake.

*2: The duration for current consumption during suction is 0.5 second or less for the power supply of DC24 V \pm 10 %.

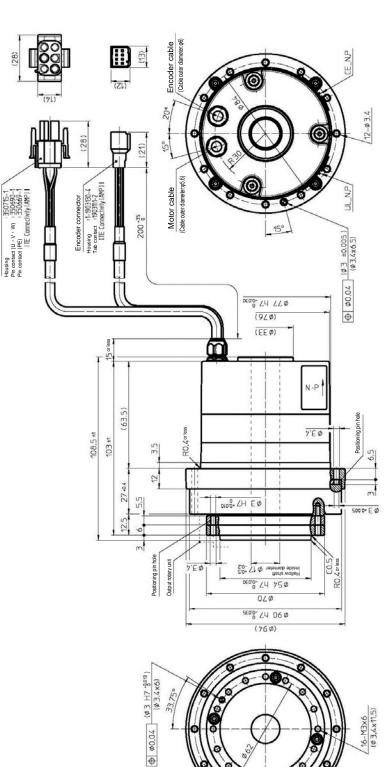
*3: The values are converted for the output shaft of the actuator.

- *4: The values present total mass of the actuator.
- *5: The service time for normal holding is assured when the brake activates at motor shaft rotation speed of 150 rpm or less.
- *6: The service time for emergency stop is assured when the brake activates at motor speed of 3000 rpm or less provided the load inertia moment is 3 times of less than that of the actuator.

The motor shaft holding brake cannot be used for deceleration. Do not use the holding brake more than the allowable number of normal brakings (100000 times at the motor shaft rotation speed of 150 rpm or less) or allowable number of emergency stops (200 times at the motor shaft rotation speed of 3000 rpm, provided the load inertia moment is 3 times or less than that of the actuator).

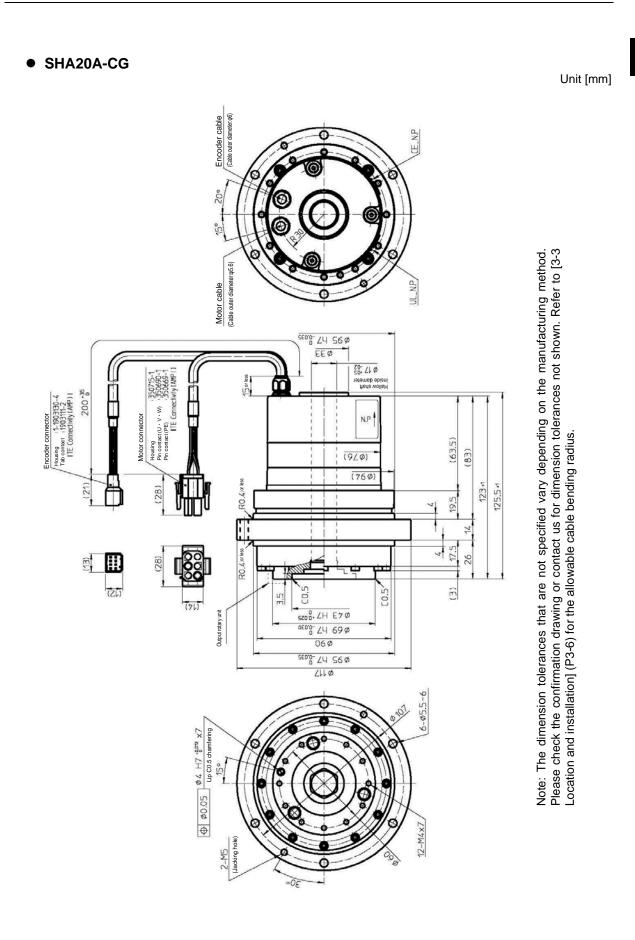
Exceeding the allowable number of normal brakings and allowable number of emergency stops may deteriorate holding torque, and may consequently become out of use as a brake.

1


Outlines

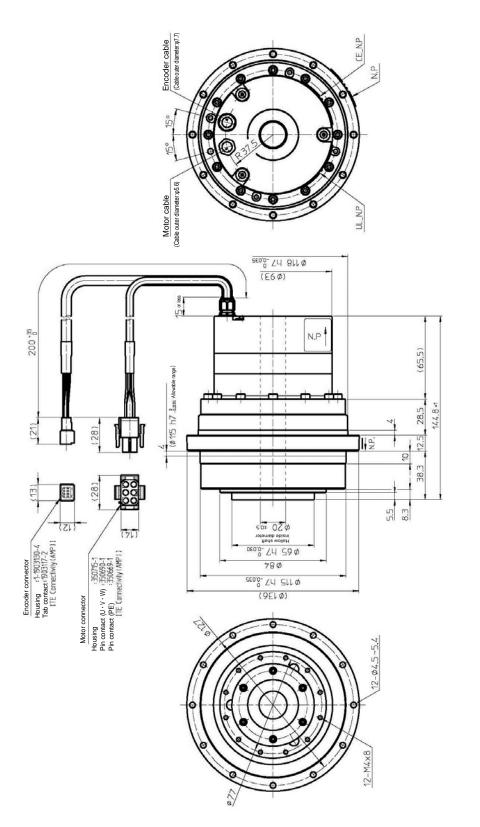
1-6 External dimensions

• SHA20A-SG


Motor connector

Unit [mm]

Please check the confirmation drawing or contact us for dimension tolerances not shown. Refer to [3-3 Location and installation] (P3-6) for the allowable cable bending radius. Note: The dimension tolerances that are not specified vary depending on the manufacturing method.

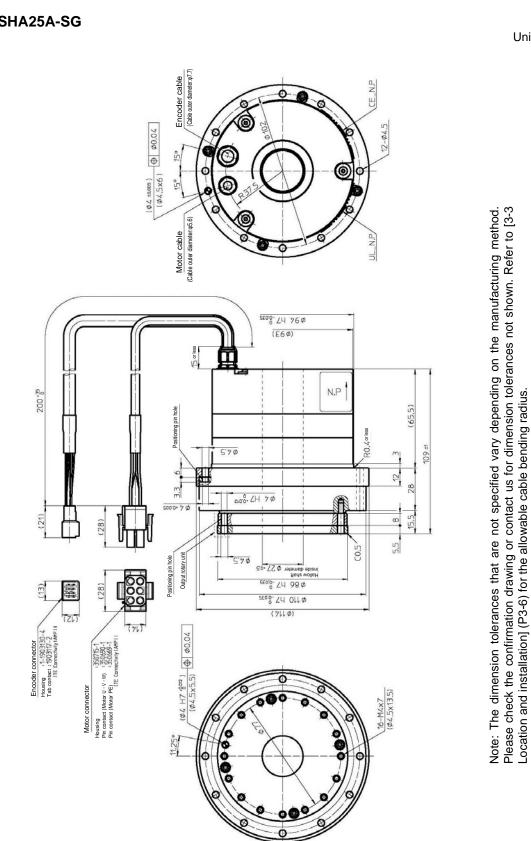

www.electromate.com sales@electromate.com 1-18

SHA25A-HP •

1

Outlines

Unit [mm]



Please check the confirmation drawing or contact us for dimension tolerances not shown. Refer to [3-3 Location and installation] (P3-6) for the allowable cable bending radius. Note: The dimension tolerances that are not specified vary depending on the manufacturing method.

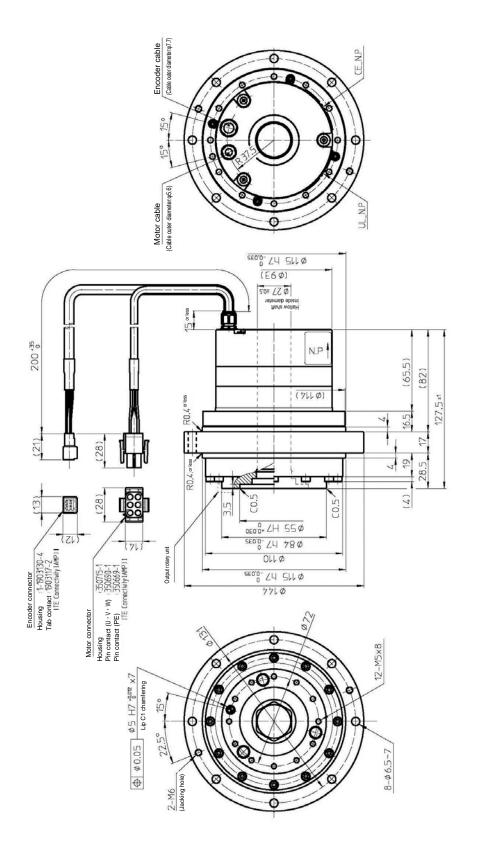
1-19

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

SHA25A-SG

Unit [mm]

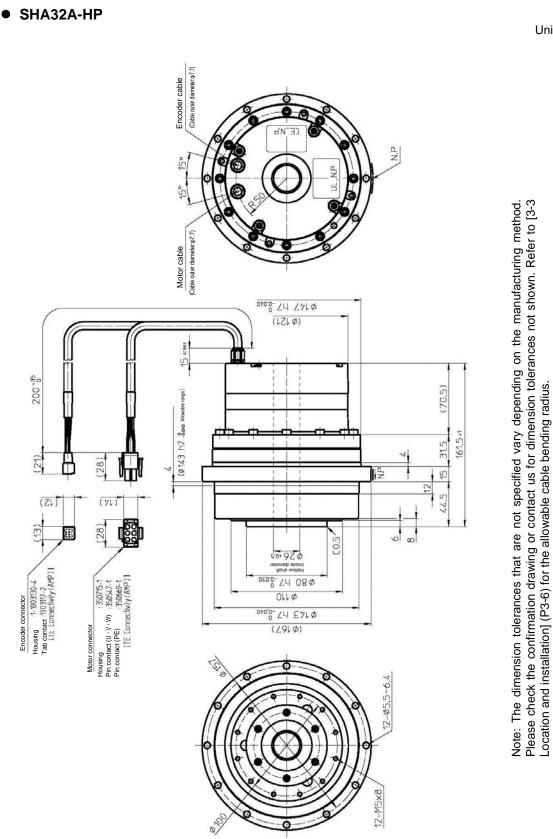
Outlines



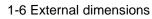
• SHA25A-CG

1

Outlines


Unit [mm]

Please check the confirmation drawing or contact us for dimension tolerances not shown. Refer to [3-3 Location and installation] (P3-6) for the allowable cable bending radius. Note: The dimension tolerances that are not specified vary depending on the manufacturing method.



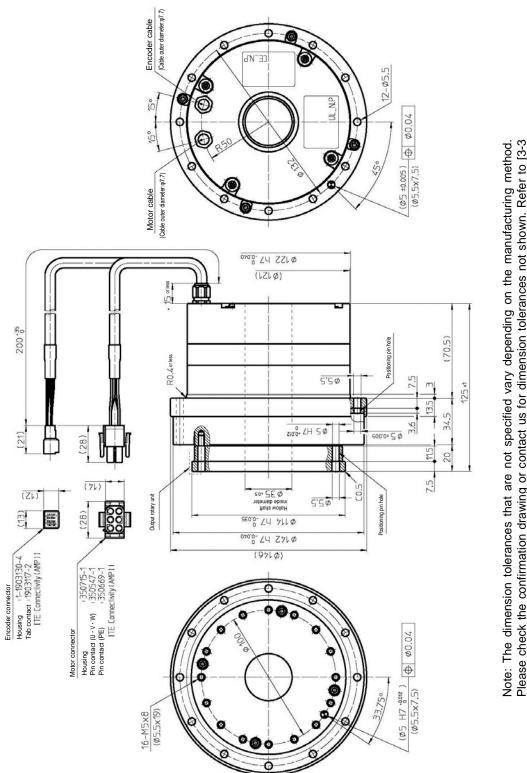
Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

Sold & Serviced by:

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 www.electromate.com sales@electromate.com

Unit [mm]

Outlines

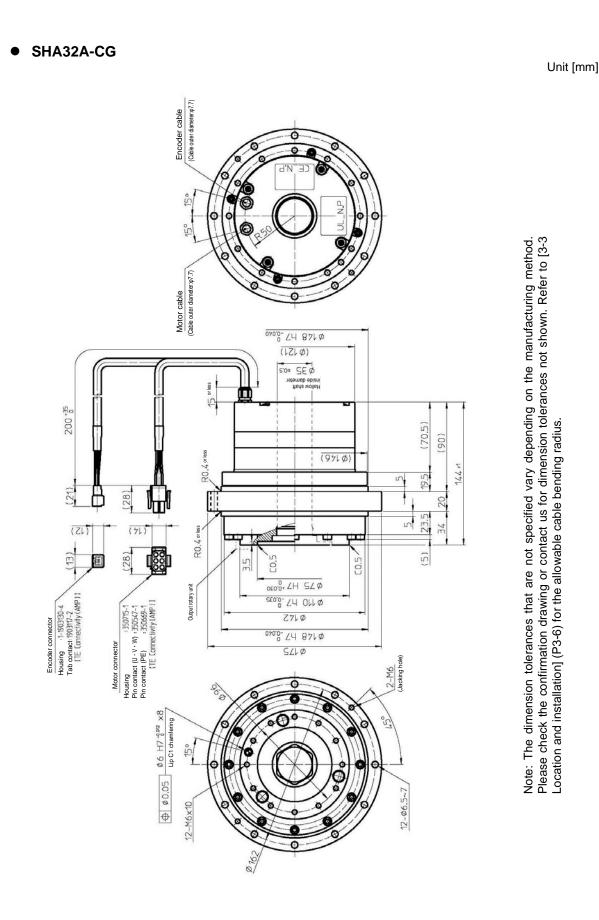

1-22

SHA32A-SG •

1

Outlines

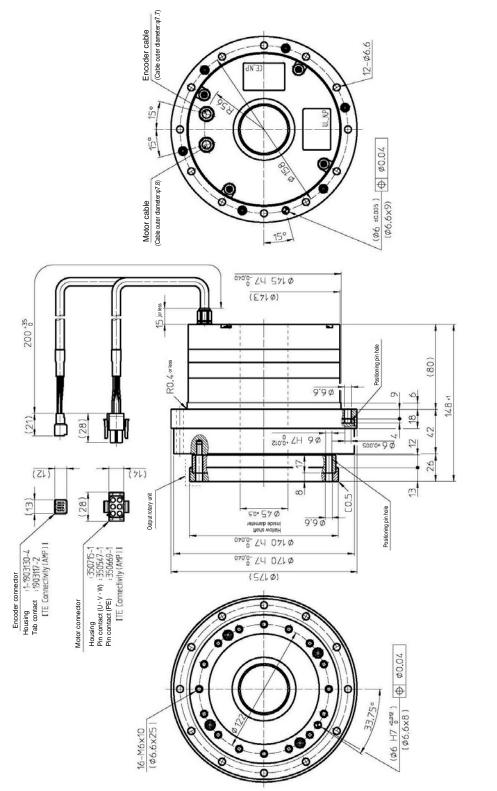
Unit [mm]



Please check the confirmation drawing or contact us for dimension tolerances not shown. Refer to [3-3 Location and installation] (P3-6) for the allowable cable bending radius.

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

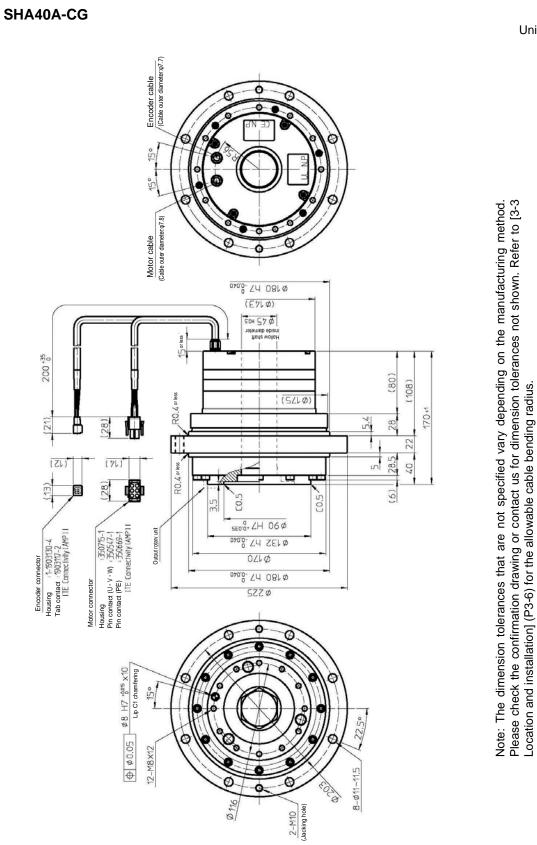
sales@electromate.com



www.electromate.com sales@electromate.com 1-24

Outlines

SHA40A-SG


Unit [mm]

Please check the confirmation drawing or contact us for dimension tolerances not shown. Refer to [3-3 Location and installation] (P3-6) for the allowable cable bending radius. Note: The dimension tolerances that are not specified vary depending on the manufacturing method.

1

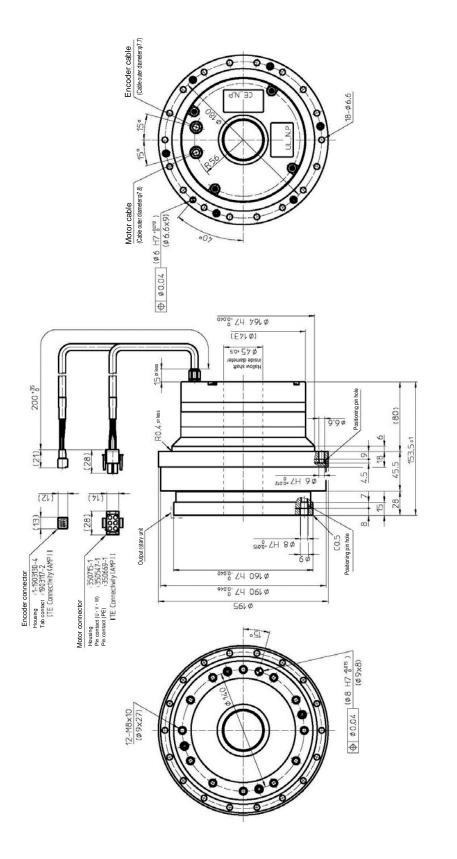
Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

1-6 External dimensions

SHA40A-CG

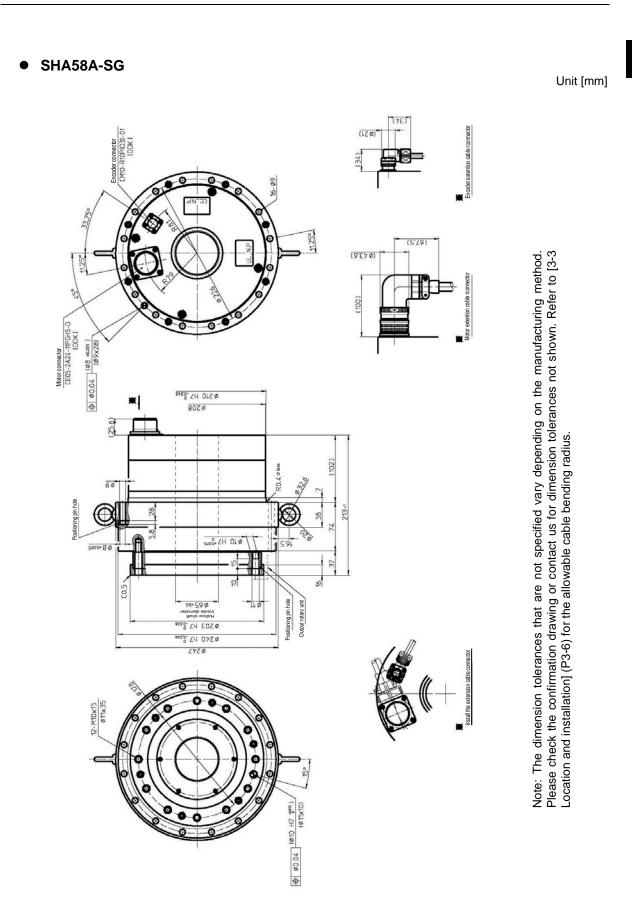
Unit [mm]

1-26



SHA45A-SG

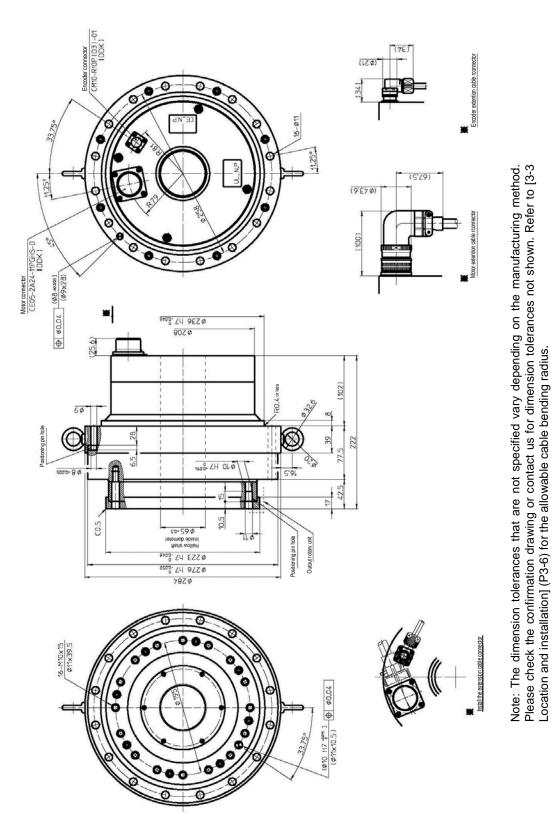
1


Outlines

Unit [mm]

Please check the confirmation drawing or contact us for dimension tolerances not shown. Refer to [3-3 Location and installation] (P3-6) for the allowable cable bending radius. Note: The dimension tolerances that are not specified vary depending on the manufacturing method.

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099



www.electromate.com sales@electromate.com 1-28

Outlines

SHA65A-SG •

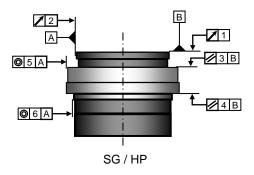
Unit [mm]

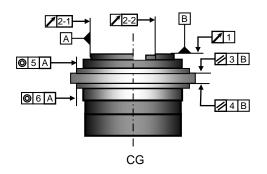
Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

1-7 Mechanical accuracy

The mechanical accuracies of the output shaft and mounting flange are shown below:

SG/HP type						
Accuracy items	SHA20A	SHA25A	SHA32A	SHA40A		
1. Axial runout of output shaft	0.030	0.035 (0.020)	0.040 (0.020)	0.045		
2. Radial runout of output shaft	0.030	0.035	0.040	0.045		
3. Parallelism between the output shaft and mounting surface	0.030	0.035	0.040	0.045		
4. Parallelism between the output shaft and mounting surface	0.055	0.050	0.055	0.060		
5. Concentricity between the output shaft and mounting pilot	0.030	0.035	0.040	0.045		
6. Concentricity between the output shaft and mounting pilot	0.045	0.060	0.065	0.070		


Accuracy items	SHA45A	SHA58A	SHA65A
1. Axial runout of output shaft	0.045	0.050	0.050
2. Radial runout of output shaft	0.045	0.050	0.050
3. Parallelism between the output shaft and mounting surface	0.045	0.050	0.050
4. Parallelism between the output shaft and mounting surface	0.060	0.070	0.070
5. Concentricity between the output shaft and mounting pilot	0.045	0.050	0.050
6. Concentricity between the output shaft and mounting pilot	0.070	0.080	0.080


Note: All values are T.I.R. (Total Indicator Reading).

The values in parenthesis are those combined with the HPF hollow shaft planetary speed reducer.

CG type				Unit [mm]
Accuracy items	SHA20A	SHA25A	SHA32A	SHA40A
1. Axial runout of the output shaft	0.010	0.010	0.010	0.010
2-1. Radial runout output shaft (Outside pilot)	0.010	0.010	0.010	0.010
2-2. Radial runout output shaft (Inside pilot)	0.015	0.015	0.015	0.015
3. Parallelism between the output shaft and mounting surface	0.030	0.030	0.035	0.035
4. Parallelism between the output shaft and mounting surface	0.040	0.040	0.045	0.045
5. Concentricity between the output shaft and mounting pilot	0.050	0.050	0.055	0.060
6. Concentricity between the output shaft and mounting pilot	0.060	0.060	0.065	0.070

Note: All values are T.I.R. (Total Indicator Reading).

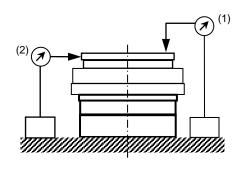
)

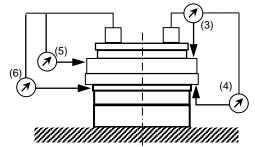
Definitions:

1 Output shaft surface runout

The indicator on the fixed part measures the axial runout (maximum runout width) of the outermost circumference of output shaft of the output rotary unit per revolution.

2 Radial runout of output shaft

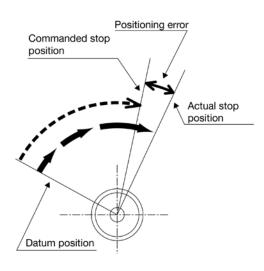

The indicator on the fixed part measures the radial runout (maximum runout width) of output shaft of the output rotary unit per revolution.


3,4 Parallelism between the output shaft and mounting pilot

The indicator on the output rotary unit measures the axial runout (maximum runout width) of the outermost circumference of the mounting surface (both on the output shaft side and opposite side) of the output rotary unit per revolution.

5,6 Concentricity between the output shaft and mounting pilot

The indicator on the output rotary unit measures the radial runout (maximum runout width) of the fitting part (both on the output shaft side and opposite side) of the output rotary unit per revolution.



1-8 Positional accuracy

One-way positional accuracy

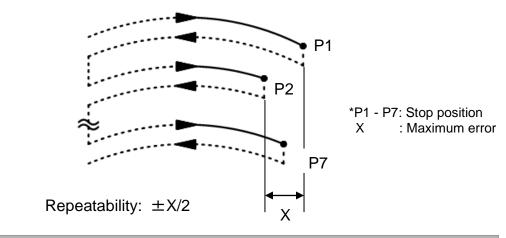
The one-way positioning accuracy is defined as the maximum positional difference between the commanded position and the actual stop position when a series of positioning moves are performed in the same rotation direction. (Refer to JIS B-6201-1987).

The SHA series incorporates a HarmonicDrive[®] speed reducer or an HPF hollow shaft planetary gear which inherently has high rotational position accuracy. Because of the gearing's high ratio, any rotational error at the input (i.e. motor shaft position error or motor feedback error) is reduced by a factor of the ratio (1/ratio) and typically becomes negligible at the output. Therefore, most of the error is represented by the transmission error of the gear itself.

The one-way positional accuracy is shown in the table below: $\ensuremath{\textbf{SG/HP}}$

Model Reduction ratio	SHA20A	SHA 25A	SHA32A	SHA40A	SHA45A	SHA58A	SHA65A
11:1	-	120	120	_	-	_	—
51:1	60	50	50	50	50	-	_
81:1 or more	50	40	40	40	40	40	40

CG Unit [arc-se						
Model Reduction ratio	SHA20A	SHA25A	SHA32A	SHA40A		
50:1	60	50	40	40		
80:1 or more	50	40	30	30		

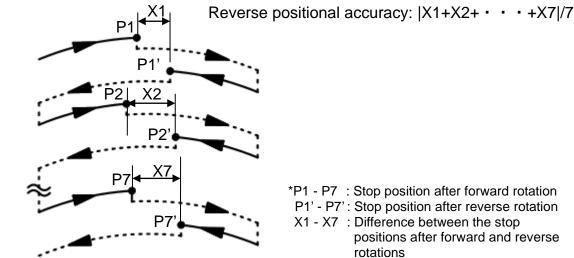


Unit [arc-sec]

Repeatability (CG)

The repeatability is measured by moving to a given theoretical position seven times, each time approaching from the same direction. The actual position of the output shaft is measured each time and repeatability is calculated as the 1/2 of the maximum difference of the seven data points. Measured values are indicated in angles (arc-sec) prefixed with "±". (Refer to JIS B 6201-1987.)

CG Unit [arc-sec]						
Model Reduction ratio	SHA20A	SHA25A	SHA32A	SHA40A		
Ratio to full speed	±5	±5	±4	±4		


Bi-directional repeatability (CG)

Sold & Serviced by:

ELECTROMATE

For the "bi-directional repeatability", the shaft is rotated beforehand in the forward (or reverse) direction and the stop position for that rotation is set as the reference position. An instruction is given to rotate the shaft in the same direction and from the stopped position, the same instruction is given in the reverse (or forward) direction and the difference between the stop position after this rotation and the reference position is measured. The average value from repeating this 7 times in each direction is shown and the maximum value measured at the 4 locations on the output shaft is shown.

CG Unit [arc-sec						
Model Reduction ratio	SHA20A	SHA25A	SHA32A	SHA40A		
1:50	75	60	60	50		
1:80 of more	30	25	25	20		

1-33

1

1-9 Encoder specifications (Absolute encoder)

The absolute encoder used in the SHA series is a multi-turn magnetic absolute encoder. This encoder consists of 17 bit single turn absolute encoder and a 16 bit cumulative counter for detecting the number of total revolutions.

This encoder constantly detects the absolute machine position and stores it by means of the backup battery, regardless of whether the driver or external controller power is turned ON/OFF. Accordingly, once the origin is detected when the machine is installed, originating is not required after subsequent power ON operation. This facilitates the recovery operation after a power failure or breakdown.

In addition, while the power is ON, the multi-turn detector portion that detects the single revolution absolute position and the number of revolutions is a dual-redundant system in which a matching check is always performed on data, and this highly reliable design allows for encoder errors to be self-detected should they occur.

In addition, a backup capacitor is installed in the encoder to retain absolute positions even when the driver-encoder extension cable is disconnected for initial startup of the device, etc. However, the backup capacitor has a limited life and its performance deteriorates. Therefore, it is recommended that you replace the backup battery in the HA-800 driver while the driver is receiving power.

Specifications

- *1	Magnetic sensor/electronic battery backup type				
Type ^{*1}	(Single rotation optic, multiple revolution magnetic sensor/electronic battery backup type)				
	(Single rotation optic, multiple revolution magnetic sensor/electronic battery backup type)				
Single-turn detector	2 ¹⁷ : 131072 pulses				
Multi-turn detector	2 ¹⁶ : 65536 (-32768 to 32767)				
Maximum permissible motor shaft					
	7000 rpm ^{*2}				
rotational speed	7000 1011				
	Check method in which two identical single revolution detectors are compared				
Safety/redundancy	Check method in which two identical cumulative revolution counters are compared				
Backup time by external battery	1 year*3 (when power is not supplied)				
Buenap anno by external battery					
Backup time by internal battery	30 minutes (after 3 hours of charge, ambient temperature of 25 °C, axis stopped)				
Backup time by internal battery	(For backup while the driver and encoder are disconnected briefly)				

*1: Size 20 is equipped with an optical encoder; other models are equipped with a magnetic encoder.

*2: This is the rotation speed limit of the encoder and is different from the rotation speed that the motor can drive.

*3: The value is obtained with the motor axis stopped. Frequent movement of the motor axis with no power supply would cause the external battery to drain quickly.

Resolution of output shaft

Encoder resolution	1			17bit (2 ¹⁷ : 13	31072 pulses)		
Reduction ratio	11:1	51:1	81:1	101:1	121:1	161:1	
Resolution of output shaft	Pulse/rev	1441792	6684672	10616832	13238272	15859712	21102592
Resolvable angle per pulse	Sec.	Approx. 0.9	Approx. 0.2	Approx. 0.12	Approx. 0.1	Approx. 0.082	Approx. 0.061
Reduction ratio		50:1	80:1	100:1	120:1	160:1	
Resolution of output shaft	pulse/rev	6553600	10485760	13107200	15728640	20971520	
Resolvable angle per pulse	Sec.	Approx. 0.2	Approx. 0.12	Approx. 0.1	Approx. 0.082	Approx. 0.062	

Absolute position data

[Absolute position] indicates the absolute position within one motor shaft revolution, while [multi revolution] indicates the number of motor revolutions. The position of the actuator output shaft is obtained by the following formula:

Position of actuator output shaft = (Absolute position + Multi revolution data × Encoder resolution) / Reduction ratio

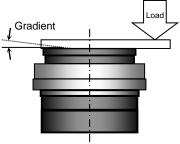
Transfer of encoder data

Data is transferred via bi-directional communication in a normal condition while power is supplied. When the driver control power supply is turned OFF and the driver enters the battery backup mode, communication stops.

Output shaft single revolution absolute model (Option)

With the standard actuator, when it continues to rotate in just one direction, the absolute encoder eventually exceeds the number of revolutions that can be detected with multi-revolution detection and it becomes impossible to manage position information accurately.

With the output shaft single revolution absolute model, each time the output shaft turns through single revolution, the cumulative multi revolution counter is cleared to 0. This is how position information is accurately managed when the shaft continuously turns in just one direction.



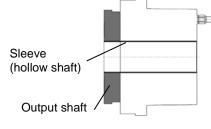
1-10 Stiffness

Moment stiffness

The moment stiffness refers to the torsional stiffness when a moment load is applied to the output shaft of the actuator (shown in the figure).

For example, when a load is applied to the end of an arm attached on the output shaft of the actuator, the face of the output shaft of the actuator tilts in proportion to the moment load. The moment stiffness is expressed as the load/gradient angle.

Item	Model	SHA20A	SHA	25A	SHA	32A
Redu	ction ratio	50:1 or more	11:1	50:1 or more	11:1	50:1 or more
	N∙m/rad	25.2×10^4	37.9×10^4	39.2 × 10 ⁴	86.1 × 10 ⁴	100 × 10 ⁴
Moment stiffness	kgf∙m/rad	25.7 × 10 ³	38.7 × 10 ³	40 × 10 ³	87.9×10 ³	102 × 10 ³
	kgf∙m/arc-min	7.5	11.3	11.6	25.7	29.6


Item	Model	SHA40A	SHA45A	SHA58A	SHA65A
Redu	ction ratio	50:1 or more	51:1 or more	81:1 or more	81:1 or more
	N∙m/rad	179×10^{4}	257×10^{4}	531 × 10 ⁴	741 × 10 ⁴
Moment stiffness	kgf∙m/rad	183×10 ³	262×10^{3}	542 × 10 ³	756 × 10 ³
0	kgf∙m/arc-min	53.2	76.3	158	220

Do not apply torque, load or thrust to the sleeve (hollow shaft) directly.

The sleeve (hollow shaft) is adhered to the output rotary shaft. Accordingly, the adhered sleeve may be detached from the output rotary shaft if a torque or load is applied to the sleeve (hollow shaft).

Do not apply any torque, moment load or thrust load directly to the sleeve (hollow shaft).

Torsional Stiffness (Ratio 50 or more: HarmonicDrive[®] speed reducer)

Caution

1

Outlines

• The speed reducer uses (1) speed ratio 50 or more for the HarmonicDrive[®] speed reducer and (2) ratio 11 for the HPF hollow shaft planetary speed reducer. The structures of the speed reducers are different, so their rotation direction torsional stiffness are different. Refer to individual characteristics shown on the graphs and tables.

If a torque is applied to the output shaft of the actuator with the servo locked, the output shaft generates a torsional stress roughly in proportion to the torque.

The upper right figure shows the torsional angle of the output shaft when a torque starting from zero and increased to positive side [+To] and negative side [-To] is applied to the output shaft. This is called [torque vs. torsional angle] diagram, which typically follows a loop $0 \rightarrow A \rightarrow B \rightarrow A' \rightarrow B' \rightarrow A$. The torsional rigidity of the SHA series actuator is expressed by the gradient of this [torque vs. torsional angle diagram] representing a spring constant (unit: N·m/rad).

As shown by lower right figure, this [torque vs. torsional angle] diagram is divided into three regions and the spring constants in these regions are expressed by K₁, K₂, and K₃, respectively. K₁: Spring constant for torque region 0 to T₁ K₂: Spring constant for torque region T₁ to T₂ K₃: Spring constant for torque region over T₂

The torsional angle for each region is expressed as follows: * ϕ : Torsional angle

- Range where torque T is T₁ or below: $\varphi = \frac{1}{2}$
- Range where torque T is T₁ to T₂:
- Range where torque T is T₂ to T₃:

Hysteresis loss

$$B$$

 T_{3}
 K_{3}
 B
 T_{1}
 T_{1}
 T_{2}
 K_{3}
 K_{3}
 T_{1}
 T_{2}
 T_{2}
 T_{3}
 T

$$\label{eq:phi} \begin{split} \phi &= \theta 1 + \frac{T-T1}{K2} \\ \phi &= \theta 2 + \frac{T-T2}{K3} \end{split}$$

The table below shows the averages of T ₁ to T ₃ , K ₁ to K ₃ , and θ_1 to θ_2 for	r each actuator.
--	------------------

	Size	SHA	20A	SHA	25A	SHA	32A	SHA	40A	
R	eduction ratio	1:50 1:51	1:80 or more							
T1	N∙m	7.0		14		29		54		
	kgf∙m	0.7		1.4		3.0		5.5		
K1	x10 ^₄ N · m/rad	1.3	1.6	2.5	3.1	5.4	6.7	10	13	
NI.	kgf∙m/arc-min	0.38	0.47	0.74	0.92	1.6	2.0	3.0	3.8	
θ1	x10 ^{-₄} rad	5.2	4.4	5.5	4.4	5.5	4.4	5.2	4.1	
01	arc-min	1.8	1.5	1.9	1.5	1.9	1.5	1.8	1.4	
T2	N∙m	25		48		108		19	196	
12	kgf∙m	2.5		4.9		11		20		
K2	X10 ^₄ N ⋅ m/rad	1.8	2.5	3.4	5.0	7.8	11	14	20	
N 2	kgf • m/arc-min	0.52	0.75	1.0	1.5	2.3	3.2	4.2	6.0	
θ2	x10 ^{-₄} rad	15.4	11.3	15.7	11.1	15.7	11.6	15.4	11.1	
02	arc-min	5.3	3.9	5.4	3.8	5.4	4.0	5.3	3.8	
K3	x10 ⁴ N · m/rad	2.3	2.9	4.4	5.7	9.8	12	18	23	
K3	kgf ⋅ m/arc-min	0.67	0.85	1.3	1.7	2.9	3.7	5.3	6.8	

Size		SHA	45A	SHA58A	SHA65A
Reduction ratio		1:51	1:81 or more	1:81 or more	1:81 or more
τ4	N∙m	7	6	168	235
T1	kgf∙m	7.8		17	24
K1	x10 ⁴ N · m/rad	15	18	40	54
NI.	kgf·m/arc-min	4.3	5.4	12	16
θ1	x10 ⁻⁴ rad	5.2	4.1	4.1	4.4
01	arc-min	1.8	1.4	1.4	1.5
T2	N∙m	275		598	843
12	kgf∙m	28		61	86
K2	X10 ⁴ N ⋅ m/rad	20	29	61	88
N 2	kgf • m/arc-min	6.0	8.5	18	26
θ2	x10 ^{-₄} rad	15.1	11.1	11.1	11.3
02	arc-min	5.2	3.8	3.8	3.9
K3	x10 ^₄ N · m/rad	26	33	71	98
N3	kgf•m/arc-min	7.6	9.7	21	29

The table below shows reference torque values calculated for different torsional angle.	Unit [N∙m]

Size	SHA	20A	SHA	25A	SHA	32A	SHA	40A
Reduction	1:50	1:80	1:50	1:80	1:50	1:80	1:50	1:80
ratio	1:51	or more						
2 arc-min	8	11	15	21	31	45	63	88
4 arc-min	19	25	35	51	77	108	144	208
6 arc-min	30	43	56	84	125	178	233	342

Size	SHA45A		SHA58A	SHA65A
Reduction	1:51	1:81 or	1:81	1:81
ratio	1.51	more	or more	or more
2 arc-min	88	124	273	360
4 arc-min	205	293	636	876
6 arc-min	336	483	1050	1450

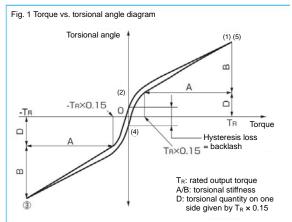
Torsional Stiffness (Ratio 11: HPF hollow shaft planetary gearhead)

If a torque is applied to the output unit with the input and casing of the speed reducer are locked, the output unit generates a torsion in proportion to the torque. When the values for torque are gradually changed in sequence from (1) Rated output torque in the positive rotation direction \rightarrow (2) zero \rightarrow (3) Rated output torque in the negative rotation direction \rightarrow (4) zero \rightarrow (5) Rated output torque in the positive rotation direction, the values follow a loop (1) \rightarrow (2) \rightarrow (3) \rightarrow (4) \rightarrow (5) (returns to (1)) shown in Fig.1 [torque vs. torsional angle diagram].

The gradient of the region [Rated output torque] from $[0.15 \times \text{rated output torque}]$ is small, and the torsional stiffness of the HPF series is the average of this gradient. The gradient of the region $[0.15 \times \text{rated output torque}]$ from [zero torque] is large. This gradient is caused by semi-partial contact in the meshing region and uneven load distribution from light loads and so forth on the planet gears.

An explanation is provided below on how to calculate the total torsional quantity on one side from a no-load state after a load has been applied by the speed reducer.

$$\theta = D + \frac{T - TL}{\frac{A}{B}}$$


 θ : total torsional quantity

D: torsional quantity on one side given by rated output torque × 0.15 torque T: load torque

TL: rated output torque \times 0.15 torque (= TR \times 0.15) A/B: torsional stiffness

The zero torque part widths of (2) and (4) in the figure on the right [torque vs. torsional angle diagram] is called the hysteresis loss. For the HPF series, backlash is defined as hysteresis loss [rated output torque in the negative rotation direction] from [rated output torque in the positive rotation direction]. The HPF series has a backlash of less than 3 minutes (less than 1 minute with special products) with factory settings.

Mode Item	SHA25A 11	SHA32A 11	
Backlash	10 ⁻⁴ rad	8.7	8.7
Dackidsh	arc-min	3	3
Rated torque (TR)	N∙m	21	44
Torsional quantity	10 ⁻⁴ rad	5.8	4.9
on one side given by T _R × 0.15 (D)	arc-min	2.0	1.7
Torsional stiffness	×10⁻⁴N⋅m/rad	5.70	11.7
(A/B)	kgf · m/arc-min	1.7	3.5

1-11 Rotation direction

SG/HP

As a default, the rotation direction is defined as counter-clockwise (CCW) rotation as viewed from the output shaft when a FWD command pulse is given from a HA-800 driver.

This rotation direction can be changed on the HA-800 driver by selecting [SP50: Command polarity setting] under [System parameter mode 3].

Counterclockwise rotation direction

Setting of [SP50: Command polarity setting]

	-					
Set value	FWD command pulse	REV command pulse	Setting			
0	CCW (counterclockwise) direction	CW (clockwise) direction	Default			
1	CW (clockwise) direction	CCW (counterclockwise) direction				

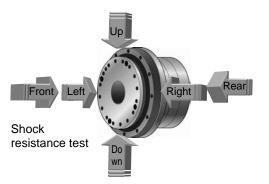
CG type

As a default, the rotation direction is defined as clockwise (CW) rotation as viewed from the output shaft when a FWD command pulse is given from a HA-800 driver.

This rotation direction can be changed on the HA-800 driver by selecting [SP50: Command polarity setting] under [System parameter mode 3].

Setting of [SP50: Command polarity setting]

Set value	FWD command pulse	REV command pulse	Setting
0	CW (clockwise) direction	CCW (counterclockwise) direction	Default
1	CCW (counterclockwise) direction	CW (clockwise) direction	

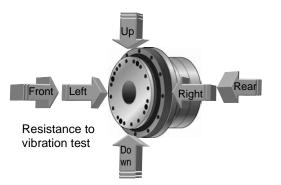


1-12 Shock resistance

The shock resistance of the actuator is as follows, and this value is the same in up/down, left/right and front/rear directions:

Impact acceleration: 300 m/s²

In our shock resistance test, the actuator is tested 3 times in each direction. Actuator operation is not guaranteed in applications where impact exceeding the above value is constantly applied.



1-13 Resistance to vibration

The resistance to vibration of the actuator is as follows, and this value is the same in up/down, left/right and front/rear directions:

Vibration acceleration: 25 m/s² (frequency: 10 to 400 Hz)

In our test, the actuator is tested for 2 hours in each direction at a vibration frequency sweep period of 10 minutes.

1-14 Operating range

The graph on the next page shows the operating range when a SHA series actuator and an HA-800 drive are combined.

1. Continuous motion range

The range allows continuous operation for the actuator.

2. 50 % duty motion range

This range indicates the torque rotation speed which is operating in the 50 % duty operation (the ratio of operating time and delay time is 50:50).

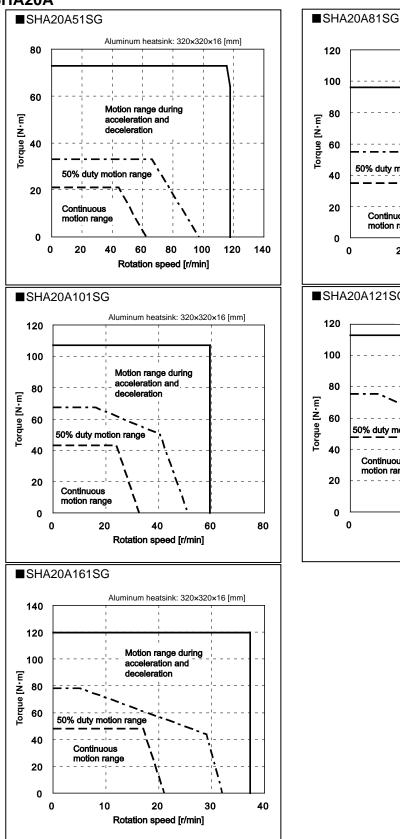
Limit the operation cycle to a period of several minutes, and keep it within a range where the overload alarm of the driver does not sound.

3. Motion range during acceleration and deceleration

This range indicates the torque rotation speed which is operated momentarily. The range allows instantaneous operation as is typical during acceleration and deceleration.

The continuous and 50 % duty motion ranges in each graph are measured on the condition where the radiation plate specified in the graph is installed.

Caution

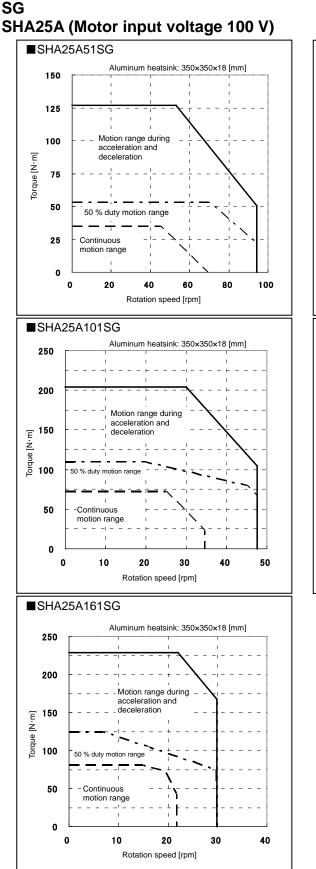

• When the SHA-SG series is operated at a constant speed (motor shaft speed of 1000 rpm or less) in the same direction under a constant load torque in a condition where the output shaft is facing up (output shaft is facing down with CG type), improper lubrication of the built-in speed reducer may cause abnormal sound or wear, leading to a shorter life. Improper lubrication can be prevented by changing the speed in the operation pattern, such as by periodically stopping the actuator. However, the planetary speed reducer (ratio 11) is not included.

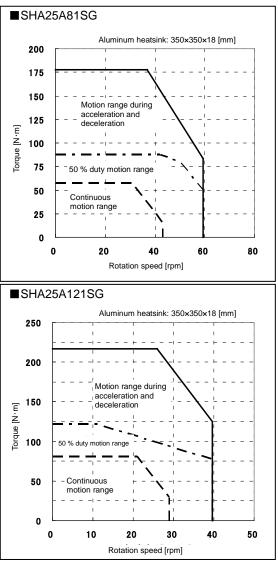
Aluminum heatsink: 320×320×16 [mm]

Motion range during

SG SHA20A

acceleration and deceleration 50% duty motion range Continuous motion range 20 40 60 80 Rotation speed [r/min] ■SHA20A121SG Aluminum heatsink: 320×320×16 [mm] Motion range during acceleration and deceleration 50% duty motion rang Continuous motion range 60 20 40 Rotation speed [r/min]

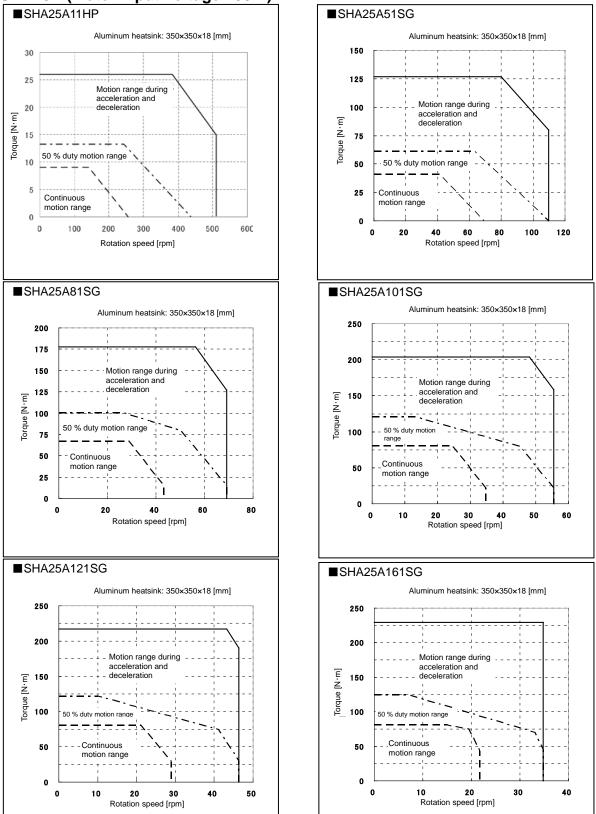

Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed.


Note2: The graph shows typical values of 3-phase 200 VAC.

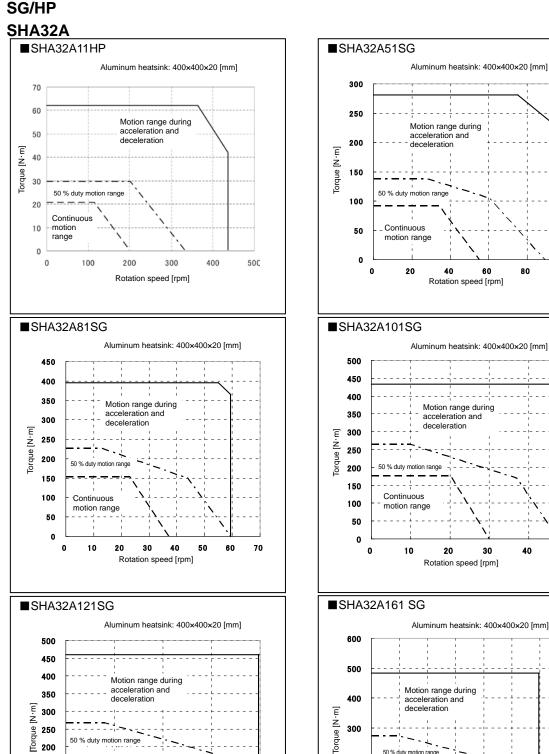
1

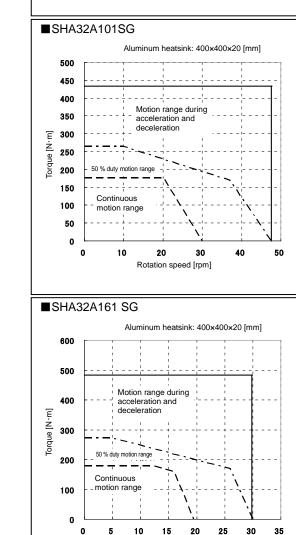
Outlines

Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed. Note2: The graph shows typical values of single phase 100 VAC.


1

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099


Outlines



Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed. Note2: The graph shows typical values of 3-phase 200 VAC.

80

100

Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed. Note2: The graph shows typical values of 3-phase 200 VAC.

1

150

100

50 0

0

Continuous

motion range

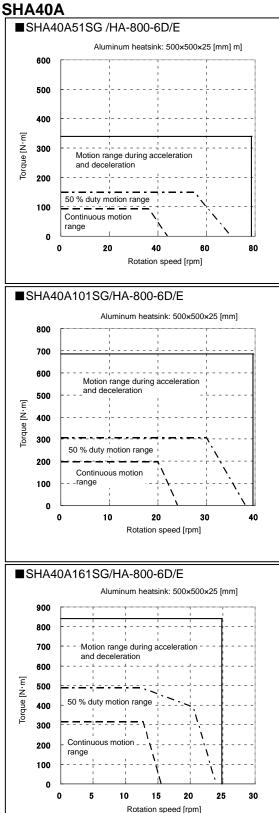
10

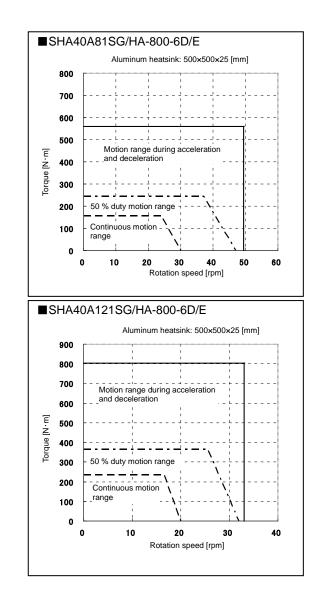
20

Rotation speed [rpm]

30

40

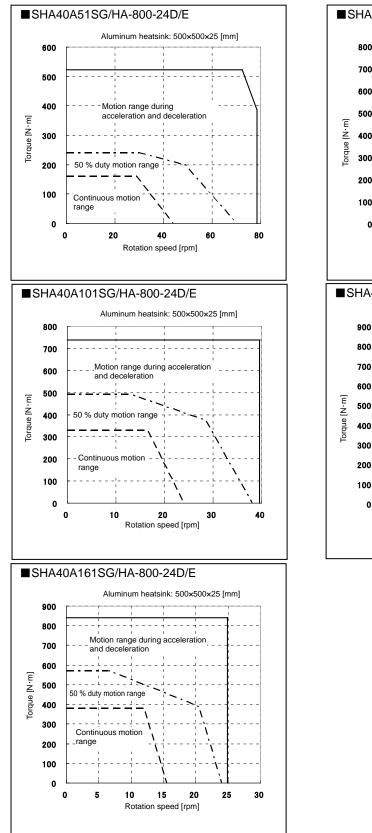

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

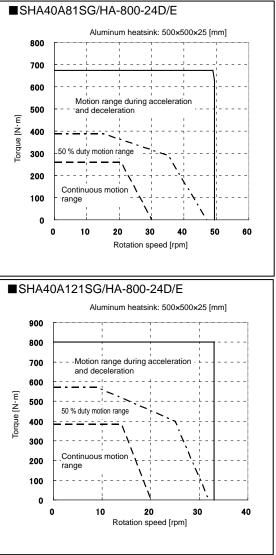

www.electromate.com sales@electromate.com

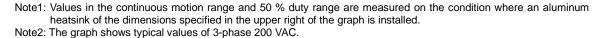
15

Rotation speed [rpm]

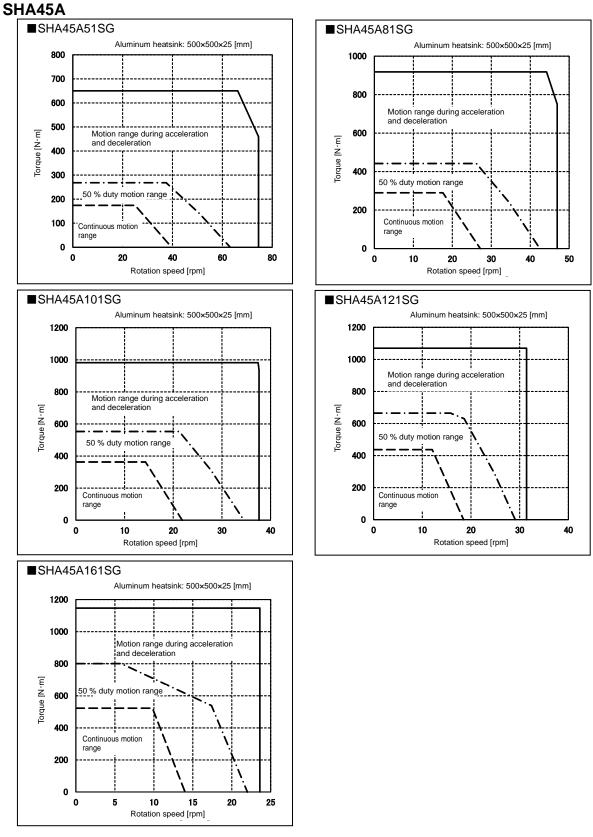
SG



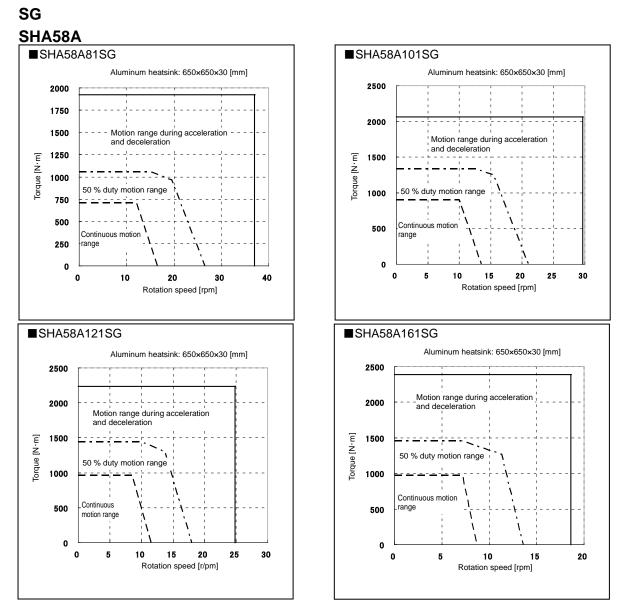



Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed. Note2: The graph shows typical values of 3-phase 200 VAC.

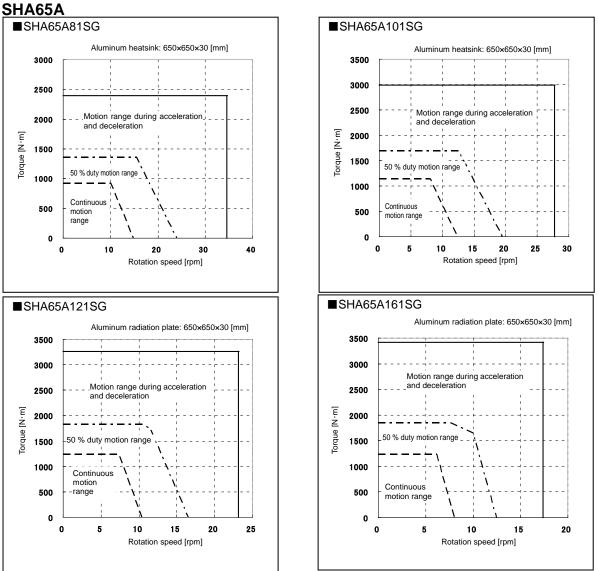


Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

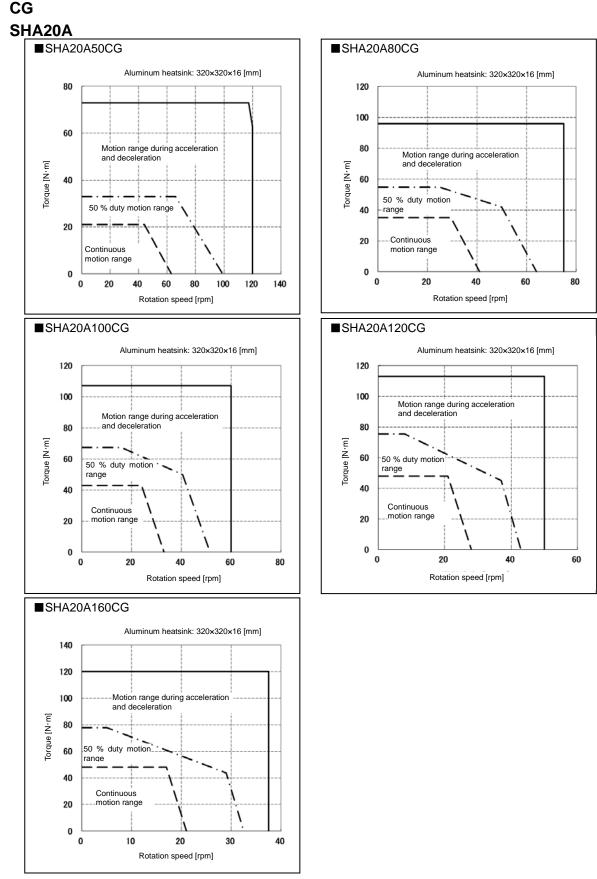

SG

Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed. Note2: The graph shows typical values of 3-phase 200 VAC.

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 www.electromate.com sales@electromate.com

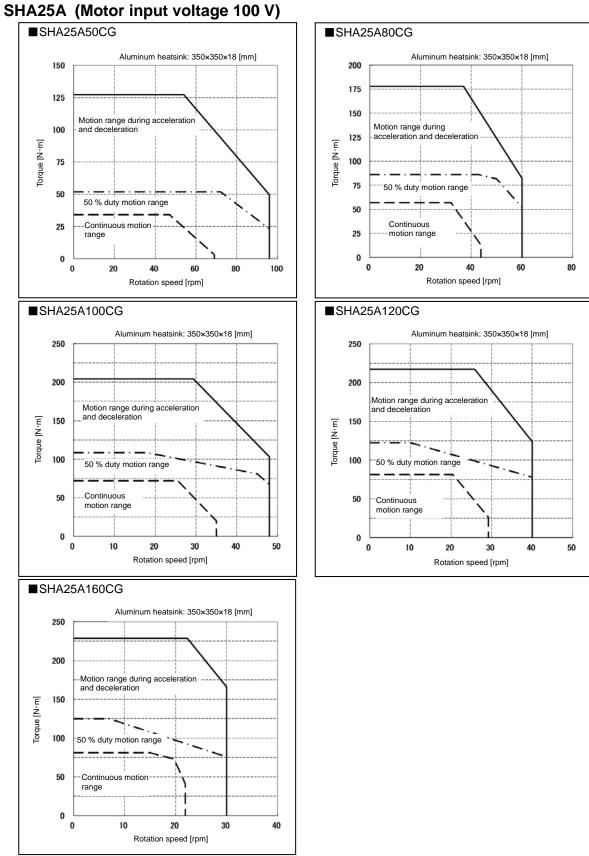

Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed. Note2: The graph shows typical values of 3-phase 200 VAC.

1


Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

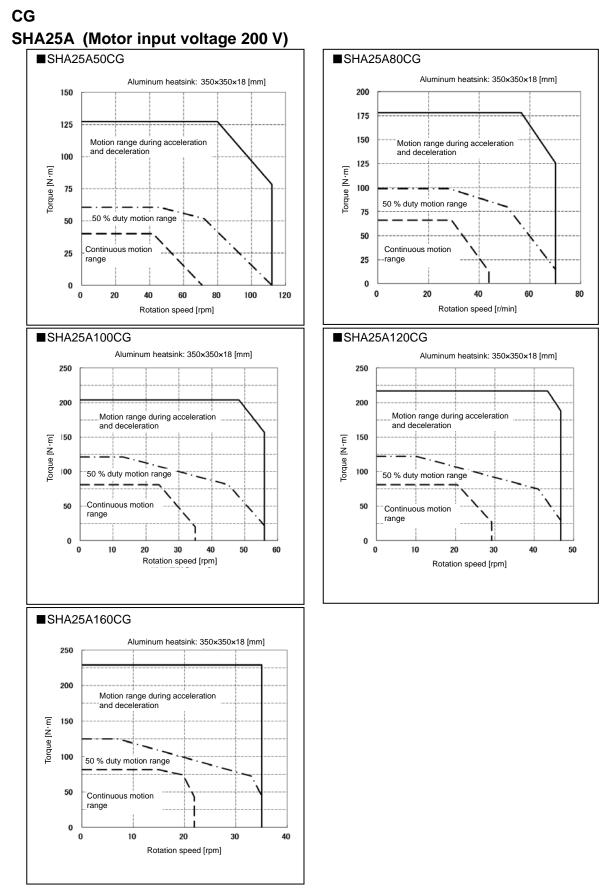
SG

Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum radiation plate of the dimensions specified in the upper right of the graph is installed. Note2: The graph shows typical values of 3-phase 200 VAC.



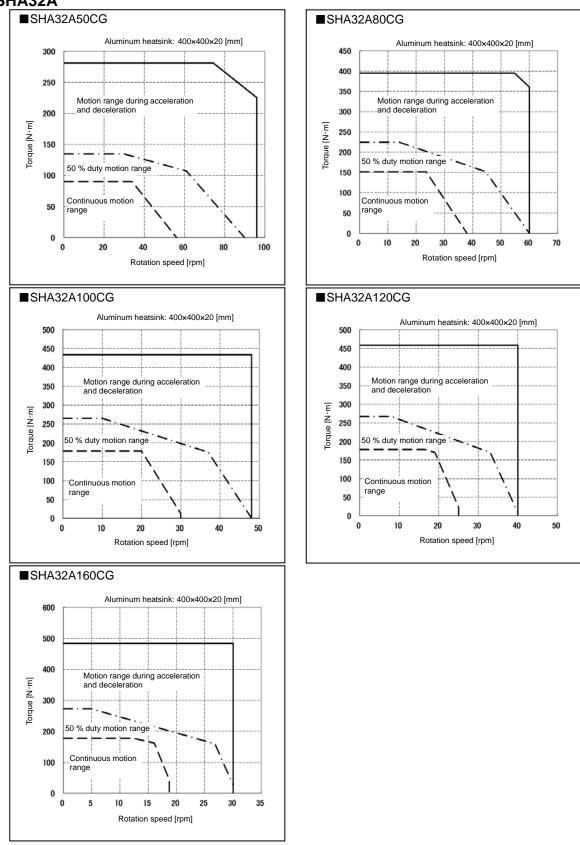
Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed. Note2: The graph shows typical values of 3-phase 200 VAC.

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099


CG

Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum radiation plate of the dimensions specified in the upper right of the graph is installed.

Note2: The graph shows typical values of single phase 100 VAC.


Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed.

Note2: The graph shows typical values of 3-phase 200 VAC.

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 www.electromate.com sales@electromate.com

CG SHA32A

Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed. Note2: The graph shows typical values of 3-phase 200 VAC.

600

500

400

300

200

100

0

800

700

600

500

400

300

200

range

Torque [N·m]

0

range

20

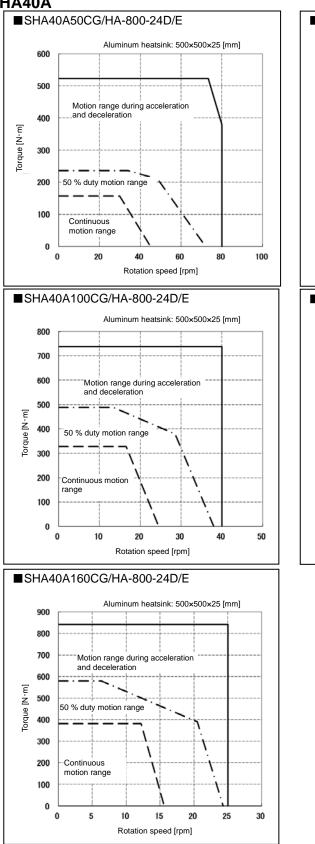
Toraue [N·m]

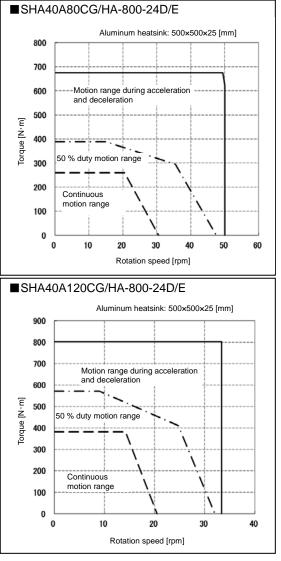
■SHA40A50CG/HA-800-6D/E SHA40A80CG/HA-800-6D/E Aluminum heatsink: 500×500×25 [mm] Aluminum heatsink: 500×500×25 [mm] 800 700 600 500 Torque [N·m] Motion range during acceleration and deceleration 400 Motion range during acceleration and deceleration 300 200 50 % duty motion range 50 % duty motion range Continuous motion 100 Continuous motion range 0 40 60 80 100 0 10 20 30 40 50 60 Rotation speed [rpm] Rotation speed [rpm] SHA40A100CG/HA-800-6D/E SHA40A120CG/HA-800-6D/E Aluminum heatsink: 500×500×25 [mm] Aluminum heatsink: 500×500×25 [mm] 900 800 700 Motion range during acceleration and deceleration Motion range during acceleration and deceleration 600 [N N 500 Torque 400 300 50 % duty motion range 50 % duty motion range 200 Continuous motion Continuous motion 100 range 0 0 10 20 30 40 20 30 40 50 Rotation speed [rpm] Rotation speed [rpm]

100 0 0 10 SHA40A160CG/HA-800-6D/E Aluminum heatsink: 500×500×25 [mm] 900 800 700 Motion range during acceleration and deceleration 600 Torque [N·m] 500 400 50 % duty motion range 300 200 Continuous motion range 100 0 0 5 10 15 20 25 30 Rotation speed [rpm]

Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed. Note2: The graph shows typical values of 3-phase 200 VAC.

Outlines


1


1-57

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

CG SHA40A

Note1: Values in the continuous motion range and 50 % duty range are measured on the condition where an aluminum heatsink of the dimensions specified in the upper right of the graph is installed.

Note2: The graph shows typical values of 3-phase 200 VAC.

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099 www.electromate.com sales@electromate.com

1-15 Cable specifications

The following tables show specifications of the motor and encoder cables of the SHA series actuators.

Motor cable specifications

• Sizes 20, 25, 32, 40, 45

Pin number	Color	Na	ame	
Pin number	COIOI	Without brake	With brake	
1	Red	Motor phase-U	Motor phase-U	
2	White	Motor phase-V Motor phase		
3	Black	Motor phase-W	Motor phase-W	
4	Green/yellow	PE	PE	
5	Blue	No connection	Brake	
6	Yellow	No connection	Brake	

• Connector pin layout

Connector model: 350715-1 Pin model:

r in mouer.		
	Model Nos 20, 25	Model Nos 32, 40
Motor UVW	350690-1	350547-1
Brake	350690-1	350690-1
Motor PE	350669-1	350669-1
TE Connectivity (

TE Connectivity (by AMP)

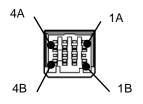
• Sizes 58, 65

Pin number	Na	ime	Color
Pin number	Without brake	With brake	(Extension cables)
А	No connection	Brake	Blue
В	No connection	Brake	Yellow
С	C No connection No connection		_
D	Motor phase-U	Motor phase-U	Red
E	Motor phase-V	Motor phase-V	White
F	Motor phase-W	Motor phase-W	Black
G	PE	PE	Green/yellow
Н	PE	PE	_
l	No connection	No connection	—

• Connector pin layout

Connector model: CE05-2A24-11PGHS-D (by DDK)

1

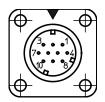


Encoder cable specifications

12	es 20, 25, 32, 40	J, 45				
	Pin number	Color	Signal name	Remarks		
-	1A	Red	Vcc	Power supply input +5 V		
	1B	Black	GND (Vcc)	Power supply input 0 V (GND)		
	2A	Yellow	SD + Serial signal differential outp			
_	2B	Blue	SD -	Serial signal differential output (-)		
	ЗA	_	No connection			
	3B	Shield	FG			
	4A	Orange	Vbat	Battery +		
_	4B	Gray	GND (bat)	Battery - (GND)		

• Sizes 20, 25, 32, 40, 45

•	Connector	pin	layout	t
•	Connector	pin	layou	L



Connector model: 1-1903130-4 Pin model: 1903111-2, 1903116-2 or 1903117-2 TE Connectivity (by AMP)

• Sizes 58, 65

Pin number	Signal name	Remarks
1	Vbat	Battery +
2	GND (bat)	Battery - (GND)
3	No connection	
4	Vcc	Power supply input +5 V
5	GND (Vcc)	Power supply input 0 V (GND)
6	No connection	
7	No connection	
8	SD +	Serial signal differential output (+)
9	SD -	Serial signal differential output (-)
10	FG	

• Connector pin layout

Connector model: CM10-R10P(D3)-01 (by DDK)

1

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

Chapter 2

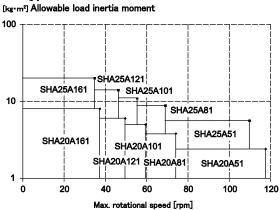
Selection guidelines

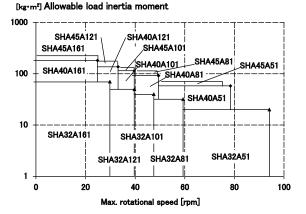
This chapter explains how to select a proper SHA series actuator.

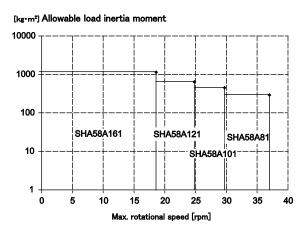
2-1	SHA series selection	
	Change in load inertia moment	
	Verifying and examining load weights	
	Examining operating status	
Z-4	Examining operating status	2-10

2-1 SHA series selection

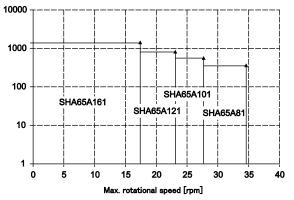
Allowable load moment of inertia

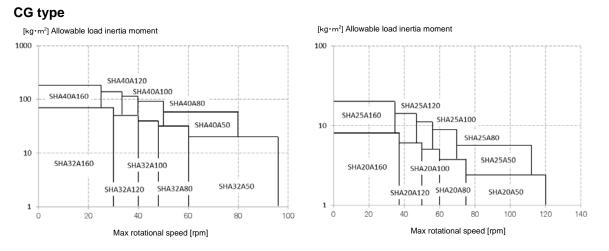

To achieve high accuracy and performance, select an SHA series actuator where the allowable load inertia moment specified for the applicable size. is not exceeded.


Note that the allowable values in the table below should be referenced if you wish to shorten the transient vibration period during positioning or operate the actuator at a constant speed in a stable manner.


The operation is possible with the allowable value exceeded if the actuator is accelerated/decelerated gradually, commands given from the host to the servo driver are adjusted, or the servo driver's vibration suppression function is used.

Refer to [A-2 Calculating inertia moment] (P5-3) for the calculation of inertia moment.


SG type



[kg·m²] Allowable load inertia moment

2-1

When temporarily selecting an actuator, make certain that the inertia moment and max. rotational speed do not exceed the allowable values shown in the table on the following page.

When a load generating a large moment of inertia is operated frequently, a greater regenerative energy will be produced during braking. If the produced regenerative energy exceeds the absorption capacity of the built-in regenerative resistor of the servo driver, an additional regenerative resistor must be connected externally to the driver. For details, refer to the manual of your drive.

SG/HP type

Actuator m	odol	SHA20A								
Actuator III	odei	51	81	101	121	161				
Reduction	ratio	1:51	1:81	1:101	1:121	1:161				
Max. rotational speed	rpm	117.6	74.1	59.4	49.6	37.3				
Actuator inertia moment	kg∙m²	0.23	0.58	0.91	1.3	2.3				
(without brake)	kgf∙cm∙s²	2.4	6.0	9.3	13	24				
Actuator inertia moment	kg∙m²	0.26	0.65	1.0	1.4	2.6				
(with brake)	kgf∙cm∙s²	2.6	6.6	10	15	26				
Allowable load	kg∙m²	2.4	3.8	4.8	5.8	7.7				
inertia moment	kgf∙cm∙s²	25	39	49	59	78				

Actuator m	odol	SHA25A								
Actuator m	odei	11	51	81	101	121	161			
Reduction	ratio	1:11	1:51	1:81	1:101	1:121	1:161			
Max. rotational speed	rpm	509.1	109.8	69.1	55.4	46.3	34.8			
Actuator inertia moment	kg∙m²	0.029	0.56	1.4	2.2	3.2	5.6			
(without brake)	kgf∙cm∙s²	0.30	5.7	14	22	32	57			
Actuator inertia moment	kg∙m²	0.034	0.66	1.7	2.6	3.7	6.6			
(with brake)	kgf∙cm∙s²	0.35	6.7	17	26	38	67			
Allowable load	kg∙m²	0.32	5.6	8.8	11	14	20			
inertia moment	kgf·cm·s ²	3.3	57	90	112	144	201			

Actuator m	odol	SHA32A							
Actuator model		11	51	81	101	121	161		
Reduction	ratio	1:11	1:51	1:81	1:101	1:121	1:161		
Max. rotational speed	rpm	436.4	94.1	59.3	47.5	39.7	29.8		
Actuator inertia moment	kg∙m²	0.091	2.0	5.1	8.0	11	20		
(without brake)	kgf∙cm∙s²	0.93	21	52	81	117	207		
Actuator inertia moment	kg∙m²	0.11	2.3	5.9	9.2	13	23		
(with brake)	kgf·cm·s²	1.1	24	60	94	135	238		
Allowable load	kg∙m²	0.99	20	32	40	50	70		
inertia moment	kgf · cm · s ²	10	200	320	400	510	710		

Actuator model		SHA40A					SHA45A				
Actuator m	odei	51	81	101	121	161	51	81	101	121	161
Reduction	ratio	1:51	1:81	1:101	1:121	1:161	1:51	1:81	1:101	1:121	1:161
Max. rotational speed	r/min	78.4	49.4	39.6	33.1	24.8	74.5	46.9	37.6	31.4	23.6
Actuator inertia moment	kg∙m²	5.0	13	20	28	50	6.8	17	27	38	68
(without brake)	kgf∙cm∙s²	51	130	202	290	513	69	175	272	390	690
Actuator inertia moment	kg∙m²	6.1	15	24	34	61	7.9	20	31	45	79
(with brake)	kgf∙cm∙s²	62	157	244	350	619	81	204	316	454	804
Allowable load	kg∙m²	58	92	114	137	182	75	119	148	178	236
inertia moment	kgf · cm · s ²	590	930	1170	1400	1860	766	1215	1514	1814	2413

Actuator model			SHA	58A		SHA65A				
Actuator m	odei	81	101	121	161	81	101	121	161	
Reduction I	ratio	1:81	1:101	1:121	1:161	1:81	1:101	1:121	1:161	
Max. rotational speed	rpm	37.0	29.7	24.8	18.6	34.6	27.7	23.1	17.4	
Actuator inertia moment	kg∙m²	96	149	214	379	110	171	245	433	
(without brake)	kgf∙cm∙s²	980	1520	2180	3870	1120	1740	2500	4420	
Actuator inertia moment	kg∙m²	106	165	237	420	120	187	268	475	
(with brake)	kgf∙cm∙s²	1090	1690	2420	4290	1230	1910	2740	4850	
Allowable load	kg∙m²	290	450	640	1140	360	560	810	1420	
inertia moment	kgf · cm · s ²	2900	4600	6500	11600	3700	5700	8200	14500	

CG type

Actuator m	Actuator model		SHA20A						
		50	80	100	120	160			
Reduction ratio		1:50	1:80	1:100	1:120	1:160			
Max. rotational speed	rpm	120	75	60	50	37.5			
Actuator inertia moment	kg∙m²	0.21	0.53	0.82	1.2	2.1			
(without brake)	kgf∙cm∙s²	2.1	5.4	8.0	12	22			
Actuator inertia moment	kg∙m²	0.23	0.60	0.94	1.3	2.4			
(with brake)	kgf∙cm∙s²	2.4	6.1	9.6	14	24			
Allowable load	kg∙m²	2.4	3.8	4.8	5.8	7.7			
inertia moment	kgf∙cm∙s²	25	39	49	59	78			

Actuator model		SHA25A				SHA32A					
Actuator	50	80	100	120	160	50	80	100	120	160	
Reduction ratio		1:50	1:80	1:100	1:120	1:160	1:50	1:80	1:100	1:120	1:160
Max. rotational speed	rpm	112	70	56	46.7	35	96	60	48	40	30
Actuator inertia moment	kg∙m²	0.50	1.3	2.0	2.9	5.1	1.7	4.3	6.7	9.7	17
(without brake)	kgf∙cm∙s²	5.1	13	20	29	52	17	44	68	99	175
Actuator inertia moment	kg∙m²	0.60	1.5	2.4	3.4	6.1	2.0	5.1	7.9	11	20
(with brake)	kgf∙cm∙s²	6.1	16	24	35	62	20	52	81	116	207
Allowable load	kg∙m²	5.6	8.8	11	14	20	20	32	40	50	70
inertia moment	kgf · cm · s ²	57	90	112	144	201	200	320	400	510	710

Actuator m	odol	SHA40A						
Actuator in	50	80	100	120	160			
Reduction ratio		1:50	1:80	1:100	1:120	1:160		
Max. rotational speed	rpm	80	50	40	33.3	25		
Actuator inertia moment	kg∙m²	4.8	12	19	27	49		
(without brake)	kgf∙cm∙s²	49	124	194	280	497		
Actuator inertia moment	kg∙m²	5.8	15	23	33	59		
(with brake)	kgf∙cm∙s²	59	150	235	338	601		
Allowable load	kg∙m²	58	92	114	137	182		
inertia moment	kgf · cm · s ²	590	930	1170	1400	1860		

2-2 Change in load inertia moment

For the SHA series combined with the high reduction ratio of the CSG or SHG Harmonic Drive[®] gear, the effects of change in load inertia moment on the servo performance are minimal. In comparison to direct servo drive mechanisms, therefore, this benefit allows the load to be driven with a better servo response.

For example, assume that the load inertia moment increases to N-times. The total inertia moment converted to motor shaft which has an effect on servo response is as follows: The symbols in the formulas are:

- Js : Total inertia moment converted to motor shaft
- J_M : Inertia moment of motor
- R : Reduction ratio of SHA series actuator
- L : Ratio of load inertia moment to inertia moment of motor
- N : Rate of change in load inertia moment
- Direct drive

Before: Js = JM(1+L) After: Js' = JM(1+NL) Ratio: $Js'/Js = \frac{1+NL}{1+L}$

• Driven by SHA series

Before: $Js = JM\left(1 + \frac{L}{R^2}\right)$ After: $Js' = JM\left(1 + \frac{NL}{R^2}\right)$ Ratio: $Js'/Js = \frac{1 + NL/R^2}{1 + L/R^2}$

With the SHA series, the value of R increases from 50 to 161, which means that the value increases substantially from $R^2 = 2500$ to $R^2 = 25921$. Then the ratio is Js'/Js \doteq 1. This means that SHA drive systems are hardly affected by the load variation.

Therefore, it is not necessary to take change in load inertia moment into consideration when selecting a SHA series actuator or setting up the initial driver parameters.

2-3 Verifying and examining load weights

The SHA series actuator incorporates a precise cross roller bearing for directly supporting an external load (output flange). To demonstrate the full ability of the actuator, verify the maximum load moment load as well as the life and static safety coefficient of the cross roller bearing.

Checking procedure

1 Verifying the maximum load moment load (Mmax)

Calculating the maximum load moment load (Mmax)

Verifying the maximum load moment load (Mmax) is less than or equal to the permissible moment load (Mc)

2 Verifying life

Calculate the average radial load (Frav) and average axial load (Faav).

↓

Calculate the radial load coefficient (X) and the axial load coefficient (Y). \downarrow

Calculate the life of the bearing and verify the life is allowable.

3 Verifying the static safety coefficient

Calculate the static equivalent radial load (Po).

Ţ

Verify the static safety coefficient (fs).

Specifications of the main roller bearing

The following table shows the specifications of the main roller bearings built in SHA actuators. Table 1: Specifications of the main roller bearings

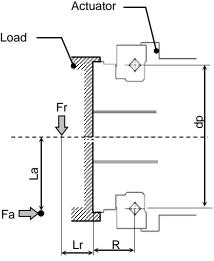
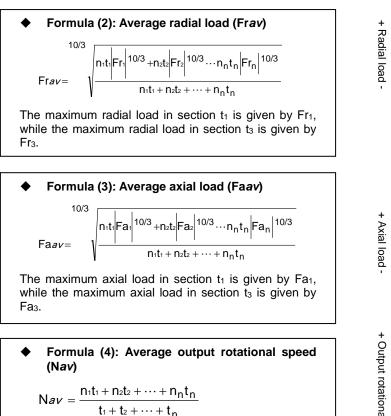
Item Model	Circular pitch of the roller (dp)	Offset amount (R)	Basic dynamic rated load (C)	Basic static rated load (Co)	Permissible moment load (Mc)	Moment stiffness (Km)
	mm	mm	kN	kN	N∙m	×10 ⁴ N ⋅ m/rad
SHA20A-SG	70	23.5	14.6	22	187	25.2
SHA20A-CG	70	19.5	14.6	22	187	25.2
SHA25A-SG	85	27.6	21.8	35.8	258	39.2
SHA25A-CG	85	21.6	21.8	35.8	258	39.2
SHA25A-HP	85	15.3	11.4	20.3	410	37.9
SHA32A-SG	111	34.9	38.2	65.4	580	100
SHA32A-CG	111	25.4	38.2	65.4	580	100
SHA32A-HP	111.5	15	22.5	39.9	932	86.1
SHA40A-SG	133	44	43.3	81.6	849	179
SHA40A-CG	133	29.5	43.3	81.6	849	179
SHA45A-SG	154	47.5	77.6	135	1127	257
SHA58A-SG	195	62.2	87.4	171	2180	531
SHA65A-SG	218	69	130	223	2740	741

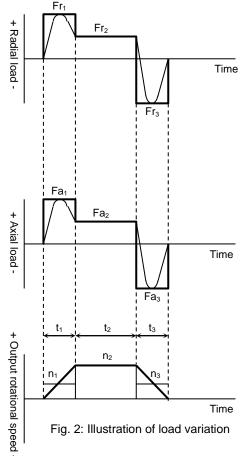
Maximum load moment load

The formula below shows how to calculate the maximum load moment load (M*max*). Verify that the maximum load moment load (M*max*) is less than or equal to the permissible moment load (Mc).

Formula (1): Maximum load moment load $M \text{ max} = \frac{Fr \max \cdot (Lr + R) + Fa \max \cdot La}{1000}$

Symbols used in the formula Mmax Maximum load moment load N·m Frmax Max. radial load Refer to Fig.1 Ν Famax Max. axial load Ν Refer to Fig.1. Refer to Fig.1. Lr ,La mm Offset amount Refer to Fig.1 and Table 1. R mm


Fig. 1: External load action

Verifying life

Calculating average loads (average radial and axial loads, average output rotational speed)

When the radial and/or axial loads vary during motion, calculate and verify the life of the cross roller bearing converting the loads to their average values.

Radial load coefficient and axial load coefficient

Determine the values of radial load coefficient (X) and axial load coefficient (Y) based on conditional judgment according to formula (5).

Table 2: Radial load coefficient (X), axial load coefficient (Y)

Formula (5)	Х	Y
$\frac{Faav}{Frav + 2(Frav(Lr + R) + Faav \cdot La)/dp} \le 1.5$	1	0.45
Faav Frav + 2(Frav (Lr + R) + Faav · La)/dp > 1.5	0.67	0.67

Symbols used in the formulas

Fr <i>av</i>	Average radial load	Ν	Refer to the average load.
Fa <i>av</i>	Average axial load	Ν	Refer to the average load.
Lr ,La		mm	Refer to Fig.1.
R	Offset amount	mm	Refer to Fig.1 and Table 1.
dp	Pitch circle diameter of a roller	mm	Refer to Fig.1 and Table 1.

Dynamic equivalent radial load

Form	Formula (6): Dynamic equivalent radial load					
$Pc = X \cdot \left(Frav + \frac{2(Frav(Lr + R) + Faav \cdot La)}{dp}\right) + Y \cdot Faav$						
Symbols	ymbols used in the formulas					
Pc	Dynamic equivalent radial load	Ν				
Fr <i>av</i>	Average radial load	Ν	Obtained by formula (2).			
Fa <i>av</i>	Average axial load	Ν	Obtained by formula (3).			
dp	Pitch circle diameter of a roller	mm	Refer to Table 1.			
Х	Radial load coefficient	_	Refer to Table 2.			
Y	Axial load coefficient	_	Refer to Table 2.			
Lr, La	_	mm	Refer to Fig.1.			
R	Offset amount	mm	Refer to Fig.1 and Table 1.			

Life of cross roller bearing

Calculate the life of cross roller bearing with the formula (7):

Formula (7): Cross roller bearing life

$$L_{B-10} = \frac{10^6}{60 \times Nav} \times \left(\frac{C}{\text{fw} \cdot \text{Pc}}\right)^{10/3}$$

Symbols used in the formulas

L _{B-10}	Life	hour	
Nav	Average output rotational speed	r/min	Obtained by formula (4).
С	Basic dynamic rated load	Ν	Refer to Table 1.
Pc	Dynamic equivalent radial load	Ν	Obtained by formula (6).
fw	Load coefficient	_	Refer to Table 3.

Table 3: Load coefficient

Loaded state	fw
Smooth operation free from impact/vibration	1 to 1.2
Normal operation	1.2 to 1.5
Operation subject to impact/vibration	1.5 to 3

Cross roller bearing life based on oscillating movement

Use formula (8) to calculate the cross roller bearing life against oscillating movement.

Formula (8): Cross roller bearing life (oscillating)						
$Loc = \frac{10^{6}}{60 \times n_{1}} \times \frac{90}{\theta} \times \left(\frac{C}{fw \cdot Pc}\right)^{10/3}$ Symbols used in the formulas						
Loc	Life	hour	_			
Loc n ₁	Life Number of reciprocating oscillation per min.	hour cpm				
	Number of reciprocating		— — Refer to Table 1.			
n ₁	Number of reciprocating oscillation per min.	cpm	— — Refer to Table 1. Obtained by formula (6).			
n ₁ C	Number of reciprocating oscillation per min. Basic dynamic rated load	cpm N				

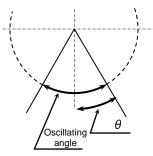


Fig. 3: Oscillating movement

If the oscillating angle is 5° or less, fretting wear may occur because oil film does not form effectively on the contact surface between the race and rolling element of the cross roller bearing. In such cases, consult HDS.

Verifying static safety coefficients

Static equivalent radial load

♦ Form	 Formula (9): Static equivalent radial load 						
	$Po = Frmax + \frac{2Mmax}{dp} + 0.44Famax$						
Symbols	Symbols used in the formulas						
Frmax	Max. radial load	Ν	Refer to Fig.1.				
Fa <i>max</i>	Max. axial load	Ν	Refer to Fig.1.				
Mmax	Max. moment load	N∙m	Refer to the maximum load weight calculation methods.				
dp	dp Pitch circle diameter of a roller mm Refer to Table 1.						

Static safety coefficient

Generally, the static equivalent load is limited by the basic static rated load(Co). However, the specific limit should be calculated according to the using conditions and required conditions. In this case, calculate the static safety coefficient (fs) by formula (10).

Table 4 shows general values representing using conditions. Calculate the static equivalent radial load (Po) by formula (9).

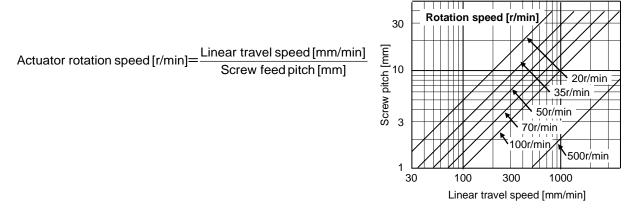
♦ Fo	Formula (10): Static safety coefficient						
	$fs = \frac{Co}{Po}$						
Symbo	ols used in the formulas						
fs	Static safety coefficient	_	Refer to Table 4.				
Co	Basic static rated load	Ν	Refer to Table 1.				
Po	Static equivalent radial load	Ν	Obtained by formula (9).				

Table 4: Static safety coe	fficients
Lloing conditions	fo

Using conditions	IS
High rotational accuracy is required, etc.	≧3
Operation subject to impact/vibration	≧2
Normal operation	≧1.5

2

Selection guidelines



2-4 Examining operating status

The actuator generates heat if started/stopped repeatedly or operated continuously at high speed. Accordingly, examine whether or not the generated heat can be accommodated. The study is as follows:

Examining actuator rotation speed

Calculate the actuator rotation speed [r/min] of the load driven by the SHA series. For linear operation, use the rotation speed conversion formula below:

Select an appropriate reduction ratio from 11, 50, 51, 80, 81, 100, 101, 120, 121, 160 and 161 so that the calculated actuator rotation speed does not exceed the maximum rotational speed of the SHA series actuator.

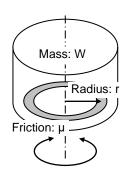
Calculating and examining load inertia moment

Calculate the load inertia moment of the load driven by the SHA series actuator.

Refer to [A-2 Calculating inertia moment] (P5-3) for the calculation.

Based on the calculated result, tentatively select a SHA series actuator by referring to [Allowable load inertia moment] (P2-1).

Load torque calculation


Calculate the load torque as follows:

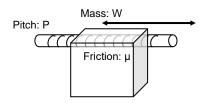
• Rotary motion

The rotary torque for the rotating mass W on the ring of radius r from the center of rotation is shown in the figure to the right.

$$T = 9.8 \times \mu \times W \times r$$

- T : Rotary torque [N·m]
- μ : Friction coefficient
- W : Mass [kg]
- r : Average radius of friction side [m]

Example of rotary torque calculation (friction coefficient = 0.1) SHA: 20 % torque of maximum torque is shown.

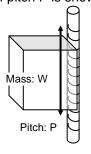

• Linear operation (horizontal operation) The rotary torque when the mass W moves horizontally due to the screw of pitch P is shown below.

$$T = 9.8 \times \mu \times W \times \frac{P}{2 \times \pi}$$

- T : Rotary torque [N·m]
- μ : friction coefficient

W : mass [kg]

P : Screw feed pitch [m]

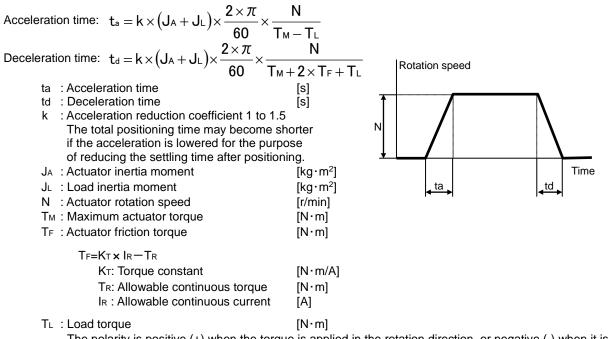


• Linear operation (vertical operation) The rotary torque when the mass W moves vertically due to the screw of pitch P is shown below.

$$\mathsf{T} = 9.8 \times \mathsf{W} \times \frac{\mathsf{P}}{2 \times \pi}$$

T : Rotary torque [N · m]

P : Screw feed pitch [m]



Acceleration time and deceleration time

Calculate acceleration and deceleration times for the selected actuator.

The polarity is positive (+) when the torque is applied in the rotation direction, or negative (-) when it is applied in the opposite direction.

Calculation example 1

Select an actuator that best suits the following operating conditions:

- Rotation speed: 80 [r/min]
- Load inertia moment: 1.5 [kg•m²]
- · Since the load mechanism is mainly inertia, the load torque is negligibly small.
- (1) After applying these conditions to the graph in [2-1], SHA25A51SG-B09A200 is tentatively selected.
- (2) From the rated table, the following values are obtained:

 $J_A = 0.56 [kg \cdot m^2]$ $T_M = 127 [N \cdot m]$ $T_R = 41 [N \cdot m]$

- K⊤ = 19 [N · m/A]
- $I_{R} = 3[A]$
- (3) Based on the above formula, the actuator's friction torque T_F is calculated as $19 \times 3 41 = 16 [N \cdot m]$.
- (4) If k = 1.3, the acceleration time and deceleration time can be obtained as follows from the above formulas:

ta = $1.3 \times (0.56 + 1.5) \times 2 \times \pi / 60 \times 80 / 127 = 0.177$ [s]

td = $1.3 \times (0.56 + 1.5) \times 2 \times \pi / 60 \times 80 / (127 + 2 \times 16) = 0.141$ [s]

- (5) If the calculated acceleration/deceleration times are too long, correct the situation by:
 - Reducing load inertia moment
 - · Selecting an actuator with a larger frame size

Examining effective torque and average rotation speed

One way to check if the heat generated from the actuator during operation would present a problem is to determine if the point of operation, determined by the effective torque and average rotation speed, is inside the continuous motion range explained in [1-14 Operating range].

Using the following formula, calculate the effective torque T_m and average rotation speed N_{av} when the actuator is operated repeatedly in the drive pattern shown to the right.

[s]

[s]

[s]

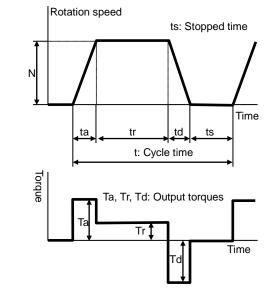
[s]

[N·m]

[N·m]

[N·m]

[N·m]


[rpm]

[rpm]

$$T_{m} = \sqrt{\frac{T_{a}^{2} \times t_{a} + T_{r}^{2} \times t_{r} + T_{d}^{2} \times t_{d}}{t}}$$

$$N_{av} = \frac{N/2 \times t_a + N \times t_r + N/2 \times t_d}{t}$$

- ta : Acceleration time from speed 0 to N
- td : Deceleration time from speed N to 0
- tr : Operation time at constant speed N
- t : Cycle time
- Tm : Effective torque
- Ta : Torque during acceleration
- Tr : Torque at constant speed
- Td : Torque during deceleration
- Nav : Average rotation speed
- N : Rotation speed at constant speed

• Calculation example 2

An example of SHA25A51SG-B09A200 is explained.

Operating conditions: Accelerate an inertia load and then let it move at a constant speed, followed by deceleration, based on conditions similar to those used in calculation example 1. The travel angle per cycle is 120° and the cycle time is 1 second.

(1) The travel angle is calculated from the area of the rotation speed vs. time diagram shown above. In other words, the travel angle θ is calculated as follows:

 $\theta = (N / 60) \times \{tr + (ta + td) / 2\} \times 360$

Accordingly, tr = $\theta / (6 \times N) - (ta + td) / 2$

When $\theta = 120^{\circ}$, and

ta = 0.177 [s]

td = 0.141 [s]

N = 80 [r/min]

in calculation example 1, are applied to this formula, tr is calculated as 0.091 [s].

(2) Next, calculate the torque during acceleration and torque during deceleration. Based on the acceleration/deceleration time formulas in the preceding section, the relational expressions for torque during acceleration and torque during deceleration if k = 1 are as follows:

$$Ta = (Ja + JL) \times 2 \times \pi / 60 \times N / ta + TL$$

$$Td = (Ja + JL) \times 2 \times \pi / 60 \times N / td - 2 \times TF - TL$$

When the values in calculation example 1 are applied to this formula,

Td = 90 [N ⋅ m]

are obtained.

(3) Calculate the effective torque. Apply the values in (1) and (2), and $Tr = 0 N \cdot m$ and t = 1 second, to the above formulas.

$$T_{m} = \sqrt{\frac{98^{2} \times 0.\ 177 + 0^{2} \times 0.\ 097 + 90^{2} \times 0.\ 141}{1}} = 53 [N \cdot m]$$

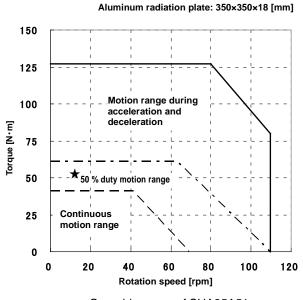
(4) Calculate the average rotation speed. Apply the values in (1), and N = 80 r/min and t = 1 second, to the above formulas.

$$N_{av} = \frac{80/2 \times 0.\ 177+80 \times 0.\ 091+80/2 \times 0.\ 141}{1} = 20 [r/m n]$$

- (5) The figure on the right shows the points of operation determined by the effective torque and average rotation speed calculated above, plotted on the graph of operable range of SHA25A51, exceeding the continuous motion range. The conclusion is that this actuator cannot be operated continuously under these conditions. Accordingly,
 - the operation patternload (possible reduction)
 - ♦actuator model No.

etc., must be reexamined.

The following formula is a modified version of the formula for effective torque. By applying the value of allowable continuous torque to T_m in this formula, the allowable cycle time can be calculated.


$$t = \frac{T_a^2 \times t_a + T_r^2 \times t_r + T_d^2 \times t_d}{T_m^2}$$

Apply the following: Ta = 98 [N \cdot m] Tr = 0 [N \cdot m] Td = 90 [N \cdot m] Tm = 41 [N \cdot m] ta = 0.177 [s] tr = 0.091 [s] td = 0.141 [s] Then, the following equation is obtained: t = (98² × 0.177 + 90² × 0.141) / 41² = 1.69 [s]

Based on the result, setting the cycle time to 1.7 seconds or more to provide a longer stopped time gives $T_m = 41 \text{ [N} \cdot \text{m}$] or less, thereby permitting continuous operation within the allowable continuous torque.

Caution

• The aforementioned continuous motion range represents an allowable range where the actuator installed on a specified aluminum radiation plate is operated under natural air cooling. If the radiation area of the mounting member is small or heat conduction of the material is poor, adjust the operating conditions to keep the rise in the actuator's ambient temperature to 40 K or less as a guide.

Operable range of SHA25A51

2

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

Chapter 3

Installing the actuator

The following explains the installation procedures of the actuators.

3-1	Receiving Inspection	
	Notices on handling	
3-3	Location and installation	

3-1 Receiving Inspection

Check the following items after unpacking the package.

Inspection procedure

1 Check the items thoroughly for damage sustained during transportation.

If any item is damaged, immediately contact the dealer.

2 Check if the actuator is what you ordered.

The nameplate is found on the rear end face of the SHA series actuator. Check the TYPE field on the nameplate to confirm that it is indeed the model you have ordered. If any item is wrong, immediately contact the dealer.

Refer to the section [1-2 Model] (P1-2) in this manual for the detail of the model codes.

3 Check the drive input voltages.

The driver's model code is shown in the TYPE field of the driver's nameplate. The last three digits of this model code indicate the input voltage to be input.

100: indicates a single phase 100VAC power supply.

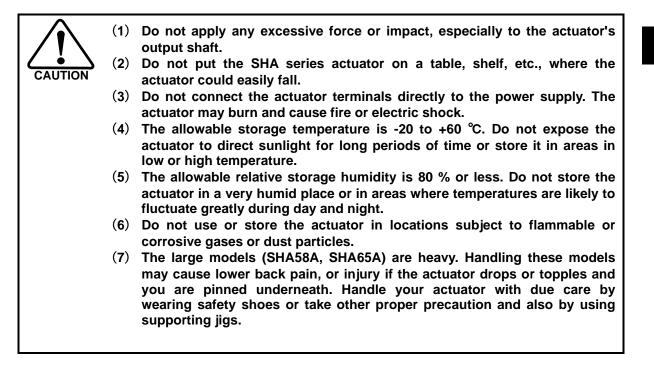
200: indicates a 3-phase/single-phase 200VAC power supply.

If the voltage to be supplied is different from the label voltage, immediately contact the dealer it was purchased from

Do not connect a supply voltage other than the voltage specified on the driver label.

Connecting a power supply not matching the input voltage specified on the nameplate may result in damage to the driver, injury or fire.

3-1



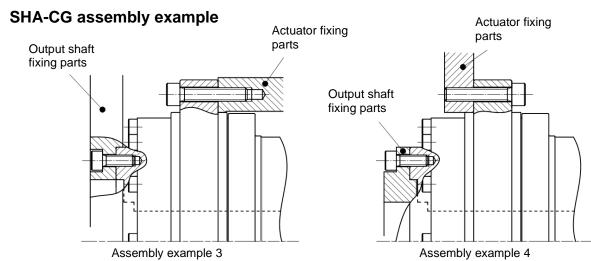
www.electromate.com sales@electromate.com

3

3-2 Notices on handling


Handle the SHA series actuator carefully by observing the notices specified below.

Installation and transmission torque


Examples of actuator assembly are shown below. Assembly examples 1 and 2 are for SHA-SG. Assembly examples 3 and 4 are for SHA-CG. Use high-tension bolts and tighten them with a torque wrench to control the tightening torque. In assembly example 2, use flat washers because the tightening torque is high and the actuator flange is made of aluminum.

SHA-SG assembly example

3

• Recommended tightening torque and transmission torque

SG/HP

	Model	SHA20A		SHA25A		SHA32A	
Item			Actuator	Output shaft	Actuator	Output shaft	Actuator
Number of bolts, size		16-M3	12-M3	16-M4 (12-M4)	12-M4	16-M5 (12-M5)	12-M5
Bolt installation P.C.D.	mm	62	84	77	102 (127)	100	132 (157)
Tightening	N∙m	2.0	2.0	4.5	4.5 (3.2)	9	9 (6.4)
torque	kgf∙m	0.20	0.20	0.46	0.46 (0.33)	0.92	0.92 (0.65)
Transmission torque	N∙m	203	206	433 (325)	430 (381)	900 (675)	891 (754)
	kgf∙m	21	21	44 (33.2)	44 (38.9)	92 (68.9)	91 (76.9)

The values in parenthesis are those combined with the HPF hollow shaft planetary speed reducer.

	Model SHA40A		SHA45A		
Item		Output shaft	Actuator	Output shaft	Actuator
Number of bolts, size		16-M6	12-M6	12-M8	18-M6
Bolt installation P.C.D.	mm	122	158	140	180
Tightening	N∙m	15.3	15.3	37	15.3
torque	kgf∙m	1.56	1.56	3.8	1.56
Transmission	N∙m	1560	1510	2428	2582
torque	kgf∙m	159	154	248	263

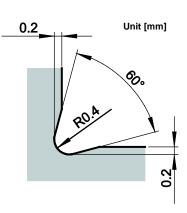
	Model SHA58A		SHA65A		
Item		Output shaft	Actuator	Output shaft	Actuator
Number of bol	ts, size	12-M10	16-M8	16-M10	16-M10
Bolt installation P.C.D.	mm	178	226	195	258
Tightening	N∙m	74	37	74	74
torque	kgf∙m	7.5	3.8	7.5	7.5
Transmission	N∙m	4940	5230	7210	9550
torque	kgf∙m	504	533	735	974

CG					
	Model	SHA20A		SHA25A	
Item		Output shaft	Actuator	Output shaft	Actuator
Number of bolts, size		12-M4	6-M5	12-M5	8-M6
Bolt installation P.C.D.	mm	60	107	72	131
Tightening	N∙m	4.5	6.4	9	11
torque	kgf∙m	0.46	0.65	0.92	1.1
Transmission	N∙m	253	257	486	600
torque	kgf∙m	26	26	50	61

	Model	SHA32A		SHA40A	
Item			Actuator	Output shaft	Actuator
Number of bo	lts, size	12-M6	12-M6	12-M8	8-M10
Bolt installation P.C.D.	mm	96	162	116	203
Tightening	N∙m	15.3	11	37	52
torque	kgf∙m	1.6	1.1	3.8	5.3
Transmission	N∙m	918	1114	2012	2639
torque	kgf∙m	94	114	205	269

Note 1: The female thread material is premised to withstand the bolt tightening torque

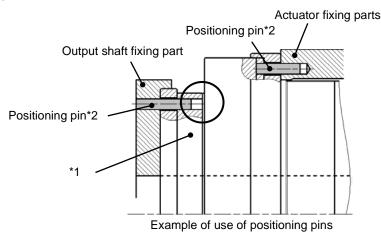
2: Recommended bolt: Hexagonal bolt per JIS B 1176 Intensity category: JIS B 1051 12.9 or higher


3: Calculation conditions Torque efficiency: 0.2 Tightening efficiency: 1.4 Tightening friction coefficient: 0.15

Precautions on installation

When designing the assembly, take note that application of any abnormal or excessive force that causes deformation of the installation surface may result in performance drop. To demonstrate the excellent performance of the SHA series actuator fully, take note of the following points:

- Warp and deformation on the mounting surface
- Blocking of foreign matter
- Burrs, rising and abnormal position accuracy around tapped mounting holes
- Insufficient chamfering of mounting faucet joint
- Abnormal circularity of mounting faucet joint


When the installation method is as shown in assembly example 2 mentioned above, the recessing shown to the right is recommended for the spigot corner section on the actuator fixing member.

Use of positioning pins

The SHA-SG series actuator has positioning pin holes in the output rotary unit and flange fixed to the actuator. The SHA series CG type has positioning pin holes only in the output rotary unit. Use these pins as necessary. For details, refer to [1-6 External dimensions] (P1-17) or the illustrated specifications.

- *1. Do not drive positioning pins into the output rotary unit, but keep proper fitting clearances to the actuator parts. Failure to do so may result in lower positional accuracy.
- *2. The hollow planetary speed reducer model is not equipped with a positioning pin.

Surface treatments

Standard SHA series actuators are given the following surface treatments:

SG/HP

Location	Surface treatments
Housing	No treatment (aluminum material is exposed)
Output shaft bearing	Raydent treatment
Speed reducer rotating part	Chrome plating
Output flange	Nickel plating or Raydent treatment
Hollow shaft (sleeve)	Nickel plating
Bolt (output shaft side)	Black oxide coating treatment

CG

Location	Surface treatments			
Housing	No treatment (aluminum material is exposed)			
Output flange	Raydent treatment			
Speed reducer rotating part	Raydent treatment, enamel resin is applied to some			
	surfaces			
Hollow shaft (sleeve)	Nickel plating			
Bolt (output shaft side)	Chrome plating or Nickel plating			

The surface treatments given to SHA series actuators do not fully prevent rust.

3-3 Location and installation

Environment of location

The environmental conditions of the installation location for SHA series actuators must be as follows. Determine an appropriate installation location by observing these conditions without fail.

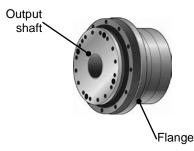
Operating temperature: 0 to 40 °C

Protection class:

- The temperature in the cabinet may be higher than the atmosphere depending on the power loss of housed devices and size of the cabinet. Plan the cabinet size, cooling system, and device locations so the ambient temperature of the actuator is kept 40 °C or below.
- ♦ Operating humidity: Relative humidity of 20 to 80 %. Make sure no condensation occurs. Take note that condensation is likely to occur in a place where there is a large temperature change between day and night or when the actuator is started/stopped frequently.
- ♦ Vibration: 25 m/s² (10 to 400 Hz) or less (Refer to [1-13 Resistance to vibration] (P1-42))
 - Impact: 300 m/s² or less (Refer to [1-12 Shock resistance] (P1-41))
- Use environment: Free from condensation, metal powder, corrosive gases, water, oil mist, flammable gases, etc.
 - Standard products are structurally designed to meet the IP-<u>5</u> <u>4</u> requirements.
 - The protection class against water entry is as follows: 4: Protected against water splashed from all directions. The protection class against contact and entry of foreign matter is as follows: 5: Protected against entry of dust/dirt. Entry of foreign matter caused by incomplete protection must not affect the operation of the system.

However, rotating and sliding areas (oil seal areas) and connectors of SHA20, 25, 32, 40, and 45 are not IP-54-compliant. Connectors of SHA58 and 65 are protected in fitted conditions.

- Locate the driver indoors or within an enclosure. Do not expose it to the sunlight.
- Altitude: lower than 1000 m above sea level
- The oil seals in rotating and sliding areas do not fully prevent leakage of lubricant. If the actuator is used in a clean room, etc., provide additional oil leakage prevention measures.


Installation

The SHA series actuator drives mechanical load system at high accuracy. When installing the actuator, pay attention to precision and do not tap the actuator output part with a hammer, etc. The actuator houses an encoder. Excessive impact may damage the encoder.

Installation procedure

1 Align the axis of rotation of the actuator and the load mechanism precisely.

Note 1: Perform this alignment carefully, especially when a rigid coupling is used. Even slight misalignment may cause the permissible load of the actuator to be exceeded, resulting in damage to the output shaft.

2 Connect the drive and wiring.

An extension cable is provided. Use it when wiring the driver. For details on wiring, refer to [1-15 Cable specifications] (P1-59) and the manual of your HA-800 driver.

3 Wire the motor cable and encoder cable.

Do not pull the cables with a strong force. The connection points may be damaged. Install the cable with slack not to apply tension to the actuator. Provide a sufficient bending radius (at least 6 times the cable diameter), especially when the cable flexes.

Caution

- Do not bring strong magnetic bodies (magnet chucks, permanent magnets, etc.) near the rear cover of the actuator. Encoder abnormality may result.
- This encoder retains absolute positions when the power is turned OFF by means of the driver's battery or its own built-in capacitor. If the encoder cable is disconnected for maintenance, etc., turn on the driver power and charge the backup capacitor first. After 3 hours of charge, the encoder cable can be disconnected for 30 minutes, provided that the axis is stopped and ambient temperature is 25 °C. However, when the backup capacitor is deteriorated, the absolute positions may not be retained.

Do not disassemble/reassemble the actuator.

The actuator uses many precision parts. If the actuator is disassembled or reassembled by the customer, it may cause burned damage or uncontrollable operation of the actuator, resulting in fire or injury.

3

Chapter 4

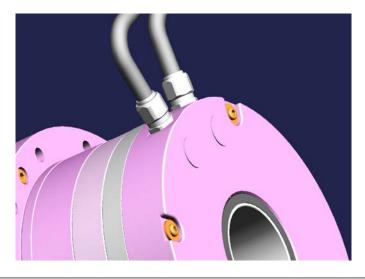
Options

This chapter explains the options available for the SHA series actuator.

4-1 Options------ 4-1

4-1 Options

With near origin and end limit sensors (option code: L)


Revolution sensors are directly connected to the output shaft on the counter-output side of the actuator. Use this option if the mechanical origin is needed (when the virtual origin of the absolute encoder does not do the job) or you want to define an operation range as a safety measure. SHA20 is not compatible.

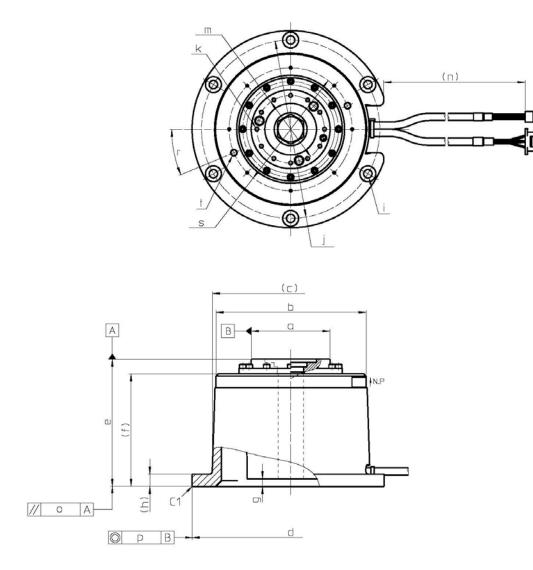
Side Exiting Cable (option code: Y)

The cables (motor and encoder wires) are taken out from the side of the actuator.

Use this option if the actuator is housed in a system and there is not enough space at the rear of the housing.

This option is not available with the SHA20 (SG), SHA58 and SHA65. For details on side exiting cables, contact our sales office.

Output shaft single revolution absolute model (option code: S)


With the standard encoder, when it continues to rotate in just one direction, the absolute encoder eventually exceeds the number of revolutions that can be detected with multi-revolution detection and it becomes impossible to manage position information accurately.

With the output shaft single revolution absolute model, each time the output shaft turns through single revolution, the cumulative multi revolution counter is cleared to 0. This is how position information is accurately managed when the shaft continuously turns in just one direction. To use this function, it is necessary to setup a drive. Refer to "HA-800 Series AC Servo Driver Manual". This option is compatible with SHA-CG 25, 32 and 40.

With stand (CG only, option code: V)

An optional stand is available for purchase to use the CG actuator for table drive. Outline drawing of the actuator with an optional stand

For models with a stand, the cable is taken out from the side of the actuator (option code: Y). Models with near home & end limit sensors (option code: L) are not supported.

			s of the actuator with		0114.40
Item	Unit	SHA20	SHA25	SHA32	SHA40
а	mm	ϕ 69 h7 0/-0.030	ϕ 84 h7 0/-0.035	ϕ 110 h7 0/-0.035	φ 132 h7 0/-0.040
b	mm	φ135	φ160	φ198	φ248
С	mm	φ143	φ168	<i>φ</i> 208	φ258
d	mm	φ177 h7 0/-0.040	¢210 h7 0/-0.046	φ260 h7 0/-0.052	φ316 h7 0/-0.057
е	mm	133±0.3	135.5 ± 0.3	152±0.3	180±0.3
f	mm	118	120	133	163
g	mm	7.5	8	8	10
h	mm	11	13	13	20
		6- <i>ф</i> 6.6	6- <i>ф</i> 9	6- <i>ф</i> 11	6- <i>ф</i> 13
i	mm	counterbore	counterbore	counterbore	counterbore
		ϕ 13 depth 1	ϕ 17 depth 1	ϕ 21 depth 1	ϕ 25 depth 1
j	mm	<i>ф</i> 161	<i>ф</i> 190	φ234	<i>ф</i> 288
k	-	12-M4×7	12-M5 × 8	12-M6×10	12-M8×12
m	mm	<i>ф</i> 60	φ72	<i>ф</i> 96	<i>ф</i> 116
n	mm	170	160	150	130
O Note1)	mm	0.050	0.055	0.060	0.070
p Note1)	mm	$\phi 0.080$	ϕ 0.080	ϕ 0.090	φ0.100
r	0	60	22.5	45	90
S	mm	φ107	φ131	φ162	φ203
t	mm	2-M6 depth 11	2-M8 depth 13	2-M8 depth 15	2-M12 depth 23
Mass Note2)	kg	4.4 (4.5)	6.1 (6.2)	11.6(11.9)	20 (21)
Section i Note 5) Bolts used	-	6-M6	6-M8	6-M10	6-M12
Section i Recommended tightening torque	N∙m	11	26	52	90

Note 1) All values are T.I.R. (Total Indicator Reading).

2) The values in parentheses are for models with a brake.

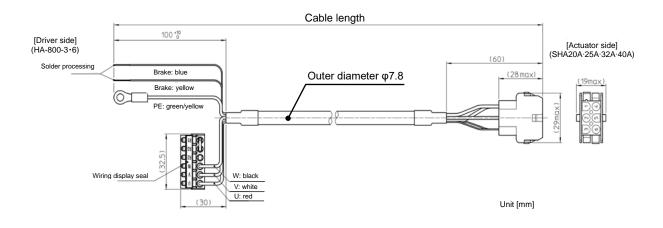
3) For detailed dimensions and specifications of the actuator, refer to the illustrated specifications.

4) Cast aluminum is used for the material of the stand. No surface treatment has been applied.

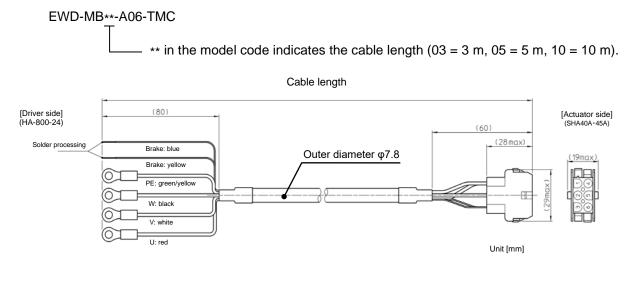
5) Use flat washers when installing the product.

4-3

Extension cables


You must use an extension cable to connect your SHA series actuator and HA-800 driver. Two types of extension cables are available for motor (including brake wire) and encoder.

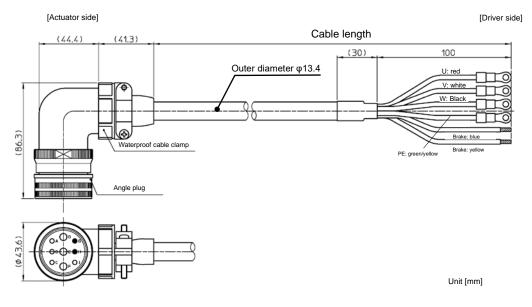
Motor extension cable:


• SHA 20, 25, 32, 40 (Size 40 requires an extension cable when combined with the HA-800-6D/E.)

EWD-MB**-A06-TN3

--- ** in the model code indicates the cable length (03 = 3 m, 05 = 5 m, 10 = 10 m).

• SHA 40, 45 (SHA 40 requires an extension cable when combined with the HA-800-24D/E.)

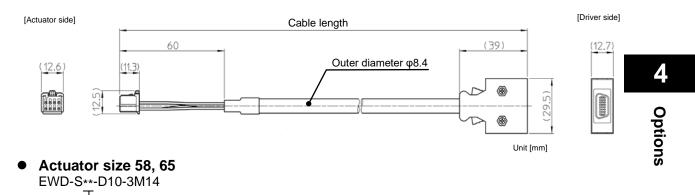


• SHA 58, 65

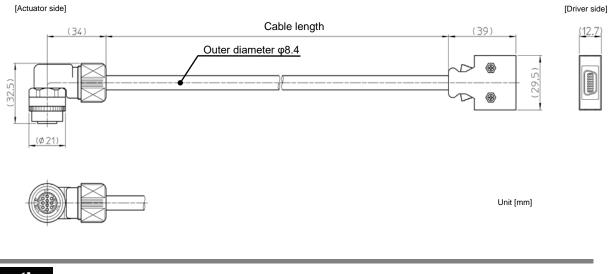
EWD-MB**-D09-TMC

** in the model code indicates the cable length (03 = 3 m, 05 = 5 m, 10 = 10 m).

4-5



Absolute encoder extension cable:


• Actuator size 20, 25, 32, 40, 45

EWD-S**-A08-3M14

** in the model code indicates the cable length (03 = 3 m, 05 = 5 m, 10 = 10 m).

Caution

• Provide a sufficient bending radius (at least 6 times the cable diameter), when the cable flexes.

4-7

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

Appendix

A-1 Unit conversion	
A-2 Calculating inertia moment	

Unit conversion A-1

This manual employs SI system for units. Conversion factors between the SI system and other systems are as follows:

(1) Length

SI system		r	n		Unit	f	t.		in.
		-			Factor		048)254
Unit		ft.		in.					
Factor	3	.281	3	9.37	SI system		r	1	
(2) Lin	ear spe	eed							
SI system		m	/s		Unit	m/min	ft./min	ft./s	in/s
					Factor	0.0167	5.08x10 ⁻³	0.3048	0.0254
Unit	m/min	ft./min	ft./s	in/s					
Factor	60	196.9	3.281	39.37	SI system		m/	S	
(3) Lin	ear aco	celeratio	n						
SI system		m	/s²		Unit	m/min ²	ft./min ²	ft./s ²	in/s ²
					Factor	2.78 x10-	⁴ 8.47x10 ⁻⁵	0.3048	0.0254
Unit	m/min ²	ft./min ²	ft./s ²	in/s ²				ŀ	
Factor	3600	1.18x10 ⁴	3.281	39.37	SI system		m/s	s ²	
(4) For	ce								
SI system		1	N		Unit	kgf	lb (fo	rce)	oz (force)
					Factor	9.81 4.45 0.278			, ,
Unit	kgf	lb (fo	orce)	oz (force)					
Factor	0.102	2 0.2	225	4.386	SI system	em N			
(5) Ma	SS								
SI system		k	g		Unit	lt	Э.	(DZ.
					Factor	0.4	535	0.0	2835
Unit		lb.		0Z.					
Factor	2	.205	3	5.27	SI system		kç	9	
(6) Ang	gle								
SI system		ra	ad		Unit	deg.	mi	า.	sec.
					Factor			4.88x10 ⁻⁶	
Unit	deg.	m	in.	sec.					
Factor	57.3	3.44	x10 ³	2.06x10 ⁵	SI system	rad			
(7) Ang	gular s	peed							
SI system		ra	d/s		Unit	deg/s	deg/min	r/s	r/min
					Factor	0.01755	2.93x10 ⁻⁴	6.28	0.1047
Unit	deg/s	deg/min	r/s	r/min					
Factor	57.3	3.44x10 ³	0.1592	9.55	SI system		rad	/s	
		1	1						

(8) Angular acceleration

	5												-
SI system		rad	l/s²		_				eg/s²			g/min ²	_
	1					Factor	r	0.0)1755		2.9	3x10 ⁻⁴	_
Unit	deg/			g/min²						➡			
Factor	57.3	3	3.4	14x10 ³	5	SI syste	m			rad/s ²			
(9) Tor	que												
SI system		N٠	m			Unit	k	gf∙m	۱b۰	ft	lb∙in	oz∙in	
		-	ŀ			Factor	r 9	.81	1.35	56 0	.1130	7.06x10 ⁻	.3
Unit	kgf∙m	lb∙ft	lb∙in	oz∙in						•			_
Factor	0.102	0.738	8.85	141.6	5	SI syste	em			N∙m			
(10) In	ertia moi	nent											
SI system					k	kg∙m²							
						+							
Unit	kgf∙m∙s²	kgf∙cm	·s² II	o∙ft²	lb•ft•s ²	lk	b∙in²	lb	∙in•s²	oz∙i	n²	oz∙in∙s²	
Factor	0.102	10.2	2	3.73	0.7376	3.4	12x10 ³	8	8.85	5.47x	104	141.6	
Unit	kgf•m•s²	kgf∙cm	•s ²	b∙ft²	lb•ft•s ²	lk	b∙in²	lb	∙in•s²	oz∙i	n²	oz∙in∙s²	-
Factor	9.81	0.098	1 0.	0421	1.356	2.9	3x10 ⁻⁴	C).113	1.829	x10 ⁻⁵	7.06x10 ⁻³	
						+							_
SI system					ł	kg∙m²							_
(11) To	orsional s	spring	consta	int, mo	ment	stiffn	ess						
SI system			1	N∙m/rad									
				₽ I									
Unit	kgf · m/rad	kgf∙m/a		kgf∙m/ de	-	t/ deg	lb∙in/						
Factor	0.102	2.97	x10 ⁻⁵	1.78x10	⁻³ 0.0)129	0.15	46					
Unit	kgf • m/rad	kgf∙m/a	arc-min	kgf∙m/ de	g lb∙ft	t/ deg	lb∙in/	deg					
Factor	9.81	3.37	x10 ⁴	562	7	7.6	6.4	7					

A-2 Calculating inertia moment

Formula for moment of inertia and mass

(1) The center of gravity is coincident with the axis of rotation

The following table includes formulas to calculate mass and inertia moment.

m: Mass [kg], Ix, Iy, Iz: inertia moments which rotate around x-, y-, z-axes respectively [kg·m²]

G: Distance from the end face to the center of gravity [m]

 ρ : Specific gravity [×10³kg / m³]

Appe Appendix Unit Inertia moment [kg·m²]

			-
Object form	Mass, inertia, gravity center	Object form	Mass, inertia, gravity center
cylinder	$m = \pi R^2 L \rho \times 10^3$	Circular pipe	$m = \pi (R_1^2 - R_2^2)L\rho \times 10^3$
			$Ix = \frac{1}{2}m(R_1^2 + R_2^2)$
R	$Ix = \frac{1}{2}mR^2$	R ₁	$IX = \frac{1}{2}m(\kappa_1 + \kappa_2)$
x	$Iy = \frac{1}{4}m\left(R^2 + \frac{L^2}{3}\right)$	R ₂ y	$Iy = \frac{1}{4}m\left\{ \left({R_1}^2 + {R_2}^2 \right) + \frac{L^2}{3} \right\}$
≪ └ →	$Iz = \frac{1}{4}m\left(R^2 + \frac{L^2}{3}\right)$	R₁:Outer diameter R₂: Inner diameter	$Iz = \frac{1}{4}m\left\{ \left({R_1}^2 + {R_2}^2 \right) + \frac{L^2}{3} \right\}$
Slanted cylinder	$m = \pi R^2 L \rho \times 10^3$	Ball	4 23
N. R			$m = \frac{4}{3}\pi R^3 \rho \times 10^3$
	$I_{\theta} = \frac{1}{12}m$		$I = \frac{2}{5} m R^2$
	$\times \left\{ 3R^2 \left(1 + \cos^2 \theta \right) + L^2 \sin^2 \theta \right\}$		5
Ellipsoidal cylinder		Cone	
	$\mathbf{m} = \frac{1}{4} \mathbf{B} \mathbf{C} \mathbf{L} \boldsymbol{\rho} \times 10^3$	Cone	$\mathbf{m} = \frac{1}{3}\pi \mathbf{R}^2 \mathbf{L} \rho \times 10^3$
B ↑	$Ix = \frac{1}{16}m(B^2 + C^2)$	R	$Ix = \frac{3}{10}mR^2$
× • c		× ()	$Iy = \frac{3}{80}m(4R^2 + L^2)$
L y	$Iy = \frac{1}{4}m\left(\frac{C^{2}}{4} + \frac{L^{2}}{3}\right)$	G + y	$\mathrm{Iz} = \frac{3}{80}\mathrm{m}\left(4\mathrm{R}^2 + \mathrm{L}^2\right)$
	$Iz = \frac{1}{4}m\left(\frac{B^2}{4} + \frac{L^2}{3}\right)$		$G = \frac{L}{4}$
Rectangular pillar	$m = A BC \rho \times 10^3$	Square pipe	$m = 4AD(B - D)\rho \times 10^{3}$
B z ↑	$Ix = \frac{1}{12}m\left(B^2 + C^2\right)$		$Ix = \frac{1}{3}m\left\{ (B \cdot D)^2 + D^2 \right\}$
×	$Iy = \frac{1}{12}m\left(C^2 + A^2\right)$	×	$Iy = \frac{1}{6}m\left\{\frac{A^2}{2} + (B \cdot D)^2 + D^2\right\}$
A	$Iz = \frac{1}{12}m\left(A^2 + B^2\right)$	× y	$Iz = \frac{1}{6}m\left\{\frac{A^{2}}{2} + (B - D)^{2} + D^{2}\right\}$

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

Object form	Mass, inertia, gravity center	Object form	Mass, inertia, gravity center
Rhombus pillar	$m = \frac{1}{2}ABC\rho \times 10^3$	Hexagonal pillar	$m = \frac{3\sqrt{3}}{2} AB^2 \rho \times 10^3$
	$Ix = \frac{1}{24}m(B^2 + C^2)$ $Iy = \frac{1}{24}m(C^2 + 2A^2)$ $Iz = \frac{1}{24}m(B^2 + 2A^2)$		$\mathbf{m} = \frac{1}{2} \mathbf{AB}^{2} \mathbf{p} \times 10^{3}$ $\mathbf{Ix} = \frac{5}{12} \mathbf{m} \mathbf{B}^{2}$ $\mathbf{Iy} = \frac{1}{12} \mathbf{m} \left(\mathbf{A}^{2} + \frac{5}{2} \mathbf{B}^{2} \right)$ $\mathbf{Iz} = \frac{1}{12} \mathbf{m} \left(\mathbf{A}^{2} + \frac{5}{2} \mathbf{B}^{2} \right)$
Isosceles triangle pillar	$m = \frac{1}{2}ABC\rho \times 10^3$	Right triangle pillar	$m = \frac{1}{2} ABC\rho \times 10^3$
	$Ix = \frac{1}{12}m\left(\frac{B^2}{2} + \frac{2}{3}C^2\right)$ $Iy = \frac{1}{12}m\left(A^2 + \frac{2}{3}C^2\right)$ $Iz = \frac{1}{12}m\left(A^2 + \frac{B^2}{2}\right)$ $G = \frac{C}{3}$		$Ix = \frac{1}{36} m \left(B^2 + C^2\right)$ $Iy = \frac{1}{12} m \left(A^2 + \frac{2}{3}C^2\right)$ $Iz = \frac{1}{12} m \left(A^2 + \frac{2}{3}B^2\right)$ $G_1 = \frac{C}{3}$ $G_2 = \frac{B}{3}$

• Example of specific gravity

The following tables show reference values for specific gravity. Check the specific gravity for each material.

Material	Specific gravity [×10 ³ kg / m ³]	Material	Specific gravity [×10 ³ kg / m ³]	Material	Specific gravity [×10 ³ kg / m ³]
SUS304	7.93	Aluminum	2.70	Epoxy resin	1.90
S45C	7.86	Duralumin	2.80	ABS	1.10
SS400	7.85	Silicon	2.30	Silicon resin	1.80
Cast iron	7.19	Quartz glass	2.20	Polyurethane rubber	1.25
Copper	8.92	Teflon	2.20		
Brass	8.50	Fluorocarbon resin	2.20		

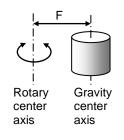
(2) Both centerlines of rotation and gravity are not the same:

The following formula calculates the inertia moment when the rotary center is different from the gravity center.

$$I = Ig + mF^2$$

- I : Inertia moment when the gravity center axis does not match the rotational axis [kg⋅m²]
- I_g : Inertia moment when the gravity center axis matches the rotational axis $[kg\!\cdot\!m^2]$
- Calculate according to the shape by using formula (1). $\rm m\,$: Mass [kg]
- F : Distance between rotary center and gravity center [m]

(3) Inertia moment of linear operation objects

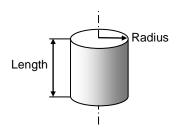

The inertia moment, converted to output shaft, of a linear motion object driven by a screw, etc., is calculated using the formula below.

$$I = m \left(\frac{P}{2\pi}\right)^2$$

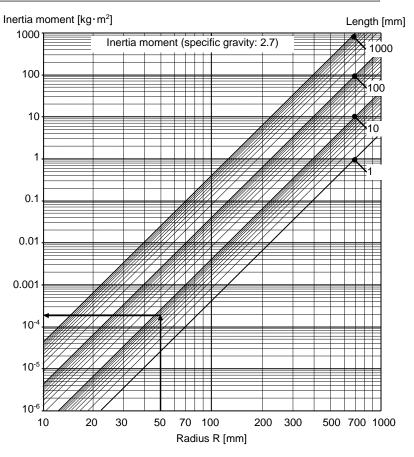
I : Inertia moment of a linear operation object converted to motor axis [kg·m²]

m : Mass [kg]

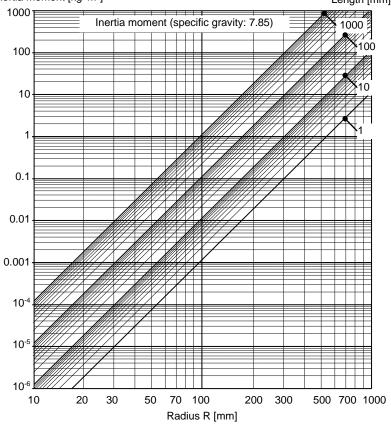
P : Linear travel per motor one revolution [m/rev]



Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099


Inertia moment of cylinder

The inertia moment of a cylinder can $[kg \cdot m^2]$ be obtained from the graphs to the right.


Apply the top graph to aluminum materials (specific gravity: 2.7) and bottom graph to steel materials (specific gravity: 7.85):

(Example) Material: Aluminum Outer diameter: 100 [mm] Length: 7 [mm] Shape: Column Outer diameter: 100 [mm] Inner diameter: 50 [mm] Inertia moment: Approx. 1.9×10^{-4} [kg \cdot m²] (by the graph on the right)

Length [mm]

Appe Appendix

5-5

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

Index

A

Absolute encoder	1-35
Acceleration time	2-12
Allowable load inertia moment	2-1
Average rotation speed	2-13

С

Cable specifications1-60
Cable taken out from side
Combinations with drivers and extension cables. 1-4
Conformance to overseas standards7

D

Deceleration time	2-12
Detector specifications	1-35

Ε

Effective torque	2-13
Encoder cable specifications	1-61
Environmental conditions	
Examining actuator rotation speed	
Examining operating status	2-10
Extension cable	
External dimensions	1-18

I

Inertia moment	5-3
Inertia moment of cylinder	5-5
Installation	3-2, 3-6, 3-7
Installation location	

L

Life	2-7
Load inertia moment	2-5, 2-10
Load torque	
Load weight	
0	

М

Maximum load moment load	2-7
Mechanical accuracy	. 1-31
Model	1-3

Moment stiffness	1-37
Motor cable specifications	1-60
Motor shaft holding brake	

N

2
2

0

Operable range	
Option	
Outlines	

Ρ

Positional accuracy	1-33
Positioning pins	
Precautions on installation	

R

Receiving inspection	3-1
Related manual	
Resistance to vibration	
Rigidity	1-37
Rotation direction	

S

SHA series selection	
Shock resistance	1-42
Specifications	
Static safety coefficient	
Surface treatment	

Т

Torsional stiffness Transmission torque	
U	
Unit	5-1
W	
With near origin and end limit sensors With stand (CG type, option code: V)	

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099

Warranty Period and Terms

The equipment listed in this document is warranted as follows: Warranty period Under the condition that the actuator is handled, used and maintained properly followed each item of the documents and the manuals, all the applicable products are warranted against defects in workmanship and materials for the shorter period of either one year after delivery or 2,000 hours of operation time. Warranty terms All the applicable products are warranted against defects in workmanship and materials for the warranted period. This limited warranty does not apply to any product that has been subject to: (1) user's misapplication, improper installation, inadequate maintenance, or misuse. (2) disassembling, modification or repair by others than Harmonic Drive Systems, Inc. (3) imperfection caused by a non-applicable product. (4) disaster or others that does not belong to the responsibility of Harmonic Drive Systems, Inc. Our liability shall be limited exclusively to repairing or replacing the product only found by Harmonic Drive Systems, Inc. to be defective. Harmonic Drive Systems, Inc. shall not be liable for consequential damages of other equipment caused by the defective products, and shall not be liable for the incidental and consequential expenses and the labor costs for detaching and installing to the driven equipment.

All efforts have been made to assure that the information in this catalog is complete and accurate. However, Harmonic Drive LLC is not liable for any errors, omissions or inaccuracies in the reported data. Harmonic Drive LLC reserves the right to change the product specifications, for any reason, without prior notice.

HarmonicDrive.net / 978-532-1800

Harmonic Drive LLC Headquarters/Manufacturing 42 Dunham Ridge, Beverly, MA 01915

New York Office 100 Motor Parkway Suite 116, Hauppauge, NY 11788

Chicago Office 137 N. Oak Park Ave. Suite 410, Oak Park, IL 60301

California Office 333 W. San Carlos St. Suite 1070, San Jose, CA 95110 **Group Companies**

Harmonic Drive Systems, Inc. 6-25-3 Minami-Ohi, Shinagawa-ku Tokyo 141-0013, Japan

Harmonic Drive SE Hoenbergstrasse, 14, D-65555 Limburg/Lahn Germany

© 2020 Harmonic Drive. All rights reserved. Harmonic Drive is a registered trademark of Harmonic Drive Systems.

Toll Free Phone: (877) SERV098 Toll Free Fax: (877) SERV099