Kollmorgen GOLDLINE® BH SEE PAGE 32
Kollmorgen GOLDLINE BH servomotors build on the tradition of high performance servomotors from Kollmorgen. Designed around the classic industry-standard Kollmorgen GOLDLINE series, the BH motors incorporate the highest energy rare earth neodymium-iron-boron magnets and excellent thermal design to provide exceptional continuous torque and peak torque performance in a compact package.

- 0.52 to 91.67 lb-ft (0.7 to 124.3 N-m) continuous torque
- 70.0 to 190 mm (2.76 to 7.5 inches) square frame
- 400/480 VAC, 565/680 VDC bus rated
- Compacted (high torque/volume ratio)
- Speeds to 7500 rpm standard
- Rugged resolver feedback
- IPM (Interior Permanent Magnet) design for low cogging
- CE compliant, UL recognized
- Built-in thermostat
- Rear shaft extension for mounting additional feedback devices
- Class H insulation system
- Rotating CE connectors standard on 12x, 22x, 42x
- Terminal box standard on 62x and 82x frames
- MH Medium inertia series for high inertia load applications

SERVOSTAR® 600 SEE PAGE 34
The SERVOSTAR 600 is a high performance, high power drive accepting 208-480 VAC and producing from 3-70 A (standard). In combination with Kollmorgen GOLDLINE series motors (BH, XT, DDR) and Kollmorgen PLATINUM® DDL-series motors, it offers the highest power, most advanced features, and broadest connectivity in the global marketplace. The integrated power supply makes it ideal for single and multi-axis applications.

Features
- Fully protected
- Meets CE and UL requirements
- Built-in features minimizes total machine cost by eliminating the need for external hardware
- Small footprint - CE Filters in 3-20 A (standard) units and option cards are contained inside the drive
- Digital position and velocity control
- Motion Tasking support tied to I/O
- Interface through analog command, digital I/O, pulse direction or encoder follower, and fieldbuses
- Built-in CANOpen support
SYSTEM OVERVIEW

RECOMMENDED MOTOR/DRIVE SYSTEMS, 400 VAC

<table>
<thead>
<tr>
<th>Servo Motor Model</th>
<th>Servo Drive Model</th>
<th>Peak Stall Torque T_{ps} (lb-in)</th>
<th>Peak Rated Torque T_{rp} (lb-in)</th>
<th>Cont. Stall Torque T_{cs} (lb-in)</th>
<th>Cont. Rated Torque T_{cr} (lb-in)</th>
<th>No-Load Speed n_{nl} rpm</th>
<th>Cont. Stall Current I_{as} A</th>
<th>Current at Peak Torque I_{ps} A</th>
<th>Inertia J (lb-in^2)</th>
<th>Inductance Line-Line L mH</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH-124-B</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>3.78 (33.5)</td>
<td>1.9 (16.8)</td>
<td>1.3 (11.5)</td>
<td>1.0 (8.8)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-126-B</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>4.07 (36)</td>
<td>2.0 (17.6)</td>
<td>1.6 (14.0)</td>
<td>1.9 (16.8)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-128-B</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>4.27 (37.8)</td>
<td>2.1 (18.6)</td>
<td>1.7 (15.0)</td>
<td>2.0 (17.6)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-130-B</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>4.56 (41)</td>
<td>2.6 (22.6)</td>
<td>2.2 (19.0)</td>
<td>2.1 (18.6)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-132-B</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>4.85 (46)</td>
<td>3.0 (26)</td>
<td>2.6 (22.6)</td>
<td>2.6 (22.6)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-134-B</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>5.14 (48)</td>
<td>3.6 (30)</td>
<td>3.2 (26)</td>
<td>3.0 (26)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-136-B</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>5.43 (50)</td>
<td>4.0 (34)</td>
<td>3.6 (30)</td>
<td>3.6 (30)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
</tbody>
</table>

RECOMMENDED MOTOR/DRIVE SYSTEMS, 480 VAC

<table>
<thead>
<tr>
<th>Servo Motor Model</th>
<th>Servo Drive Model</th>
<th>Peak Stall Torque T_{ps} (lb-in)</th>
<th>Peak Rated Torque T_{rp} (lb-in)</th>
<th>Cont. Stall Torque T_{cs} (lb-in)</th>
<th>Cont. Rated Torque T_{cr} (lb-in)</th>
<th>No-Load Speed n_{nl} rpm</th>
<th>Cont. Stall Current I_{as} A</th>
<th>Current at Peak Torque I_{ps} A</th>
<th>Inertia J (lb-in^2)</th>
<th>Inductance Line-Line L mH</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH-124-A</td>
<td>B003</td>
<td>2.4 (21.2)</td>
<td>2.16 (19.1)</td>
<td>0.70 (6.2)</td>
<td>0.52 (4.6)</td>
<td>0.70 (6.2)</td>
<td>0.52 (4.6)</td>
<td>7.50 (65.2)</td>
<td>0.70 (6.2)</td>
<td>7.50 (65.2)</td>
</tr>
<tr>
<td>BH-126-A</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>3.78 (33.5)</td>
<td>1.9 (16.8)</td>
<td>1.3 (11.5)</td>
<td>1.0 (8.8)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-128-A</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>4.07 (36)</td>
<td>2.0 (17.6)</td>
<td>1.6 (14.0)</td>
<td>1.9 (16.8)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-130-A</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>4.27 (37.8)</td>
<td>2.1 (18.6)</td>
<td>1.7 (15.0)</td>
<td>2.0 (17.6)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-132-A</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>4.56 (41)</td>
<td>2.6 (22.6)</td>
<td>2.2 (19.0)</td>
<td>2.1 (18.6)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-134-A</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>4.85 (46)</td>
<td>3.0 (26)</td>
<td>2.6 (22.6)</td>
<td>2.6 (22.6)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-136-A</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>5.14 (48)</td>
<td>3.6 (30)</td>
<td>3.2 (26)</td>
<td>3.0 (26)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
<tr>
<td>BH-138-A</td>
<td>B003</td>
<td>4.2 (37.2)</td>
<td>5.43 (50)</td>
<td>4.0 (34)</td>
<td>3.6 (30)</td>
<td>3.6 (30)</td>
<td>1.1 (10.2)</td>
<td>3.0 (26.7)</td>
<td>10</td>
<td>0.96</td>
</tr>
</tbody>
</table>

BH Series motors with SERVOSTAR® 600 Drives

1. Ambient temperature at 40°C (or less).
2. Continuous duty ratings are for motor mounted to a 1/4" thick aluminum faceplate of 96 square inches.
3. Continuous duty ratings are for motors mounted to a 1/4" thick aluminum faceplate of 452 square inches.
4. Inertia includes feedback inertia.

Kollmorgen GOLDLINE® BH & SERVOSTAR® 600 Systems
BH SERIES MOTORS

Kollmorgen GOLDLINE® BH & SERVOSTAR® 600 System

Kollmorgen GOLDLINE® BH

The BH series motors incorporate the patented IPM (Interior Permanent Magnet) design technology which results in superior torque-to-inertia and torque-to-volume ratios.

The BH line of servomotors is available in 5 frame sizes and 3 stack lengths per frame. With multiple windings per stack, the BH Series meets the needs of a wide range of applications.

The BH Series provides extremely low inertia rotors, allowing optimum performance in applications requiring rapid acceleration and deceleration. The IPM magnetic design provides for very high torque density and torque-to-inertia ratios. When used with the SERVOSTAR 600 family of amplifiers, the resulting speed/torque is the widest range in the industry. MH Series medium inertia models also available, for better performance in systems having compliant loads or high inertia mismatches.

<table>
<thead>
<tr>
<th>Features</th>
<th>Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH Series Motors</td>
<td>Maximum application flexibility</td>
</tr>
<tr>
<td>0.52 to 91 lb-ft (0.7 to 124 N-m)</td>
<td>Maximum application flexibility</td>
</tr>
<tr>
<td>70.0 to 190 mm (2.76 to 7.5 inches)</td>
<td>Bet space utilization</td>
</tr>
<tr>
<td>400/480 VAC, 565/680 VDC bus rated</td>
<td>Global high voltage capability</td>
</tr>
<tr>
<td>Compact (high torque/volume ratio)</td>
<td>Maximum Torque in minimum space</td>
</tr>
<tr>
<td>Speeds to 7500 rpm standard</td>
<td>Maximum application flexibility</td>
</tr>
<tr>
<td>IPM (Interior Permanent Magnet) design</td>
<td>Low cogging</td>
</tr>
<tr>
<td>CE compliant, UL recognition</td>
<td>Global acceptance</td>
</tr>
<tr>
<td>Rugged resolver feedback</td>
<td>Reliable precise operation</td>
</tr>
<tr>
<td>Built-in thermostat</td>
<td>Protection</td>
</tr>
<tr>
<td>Rear shaft extension</td>
<td>Allows mounting of additional feedback devices</td>
</tr>
<tr>
<td>Class H insulation system</td>
<td>High temperature reliability</td>
</tr>
</tbody>
</table>

STANDARD FEATURES

- Rotatable CE connectors standard on 12x, 22x, 42x
- Terminal box standard on 62x, 82x frames
- IP65 sealing
- Metric mountings

OPTIONS

- IP67 sealing
- Fail-safe brake, 24 and 90 VDC
- NEMA mountings
- Standard SERVOSTAR 600 UL/CE cable assemblies available in 3 meter increments.

Table:

<table>
<thead>
<tr>
<th>Model</th>
<th>"A" VS. WITHOUT BRAKE</th>
<th>"B"</th>
<th>"C"</th>
<th>"D"</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH-122</td>
<td>204.5 (8.03) -232.8 (9.19)</td>
<td>159.0 (6.26)</td>
<td>18.0 (0.71)</td>
<td>23.0 (0.90)</td>
</tr>
<tr>
<td>BH-124</td>
<td>234.5 (9.23) -276.8 (9.95)</td>
<td>189.5 (7.46)</td>
<td>20.0 (0.79)</td>
<td>30.0 (1.16)</td>
</tr>
<tr>
<td>BH-126</td>
<td>264.0 (10.39) -303.7 (11.91)</td>
<td>210.0 (8.32)</td>
<td>20.0 (0.79)</td>
<td>30.0 (1.16)</td>
</tr>
<tr>
<td>MH-123</td>
<td>204.0 (8.03) -232.8 (9.19)</td>
<td>159.0 (6.26)</td>
<td>18.0 (0.71)</td>
<td>23.0 (0.90)</td>
</tr>
<tr>
<td>MH-125</td>
<td>234.5 (9.23) -276.8 (9.95)</td>
<td>189.5 (7.46)</td>
<td>20.0 (0.79)</td>
<td>30.0 (1.16)</td>
</tr>
<tr>
<td>MH-127</td>
<td>264.0 (10.39) -303.7 (11.91)</td>
<td>210.0 (8.32)</td>
<td>20.0 (0.79)</td>
<td>30.0 (1.16)</td>
</tr>
</tbody>
</table>

Notes:

1. Motor can be mounted in any position.
2. Counterbore for o-ring seal.
3. -61 and -71 models have been certified to meet IP65 sealing. -S model has been certified to meet IP67 sealing and has viton shaft seal and viton o-rings.
4. -63 and -73 models meet sealing specs except for mounting face. Kollmorgen approved mating plugs with filler plugs must be installed before motor meets sealing specs.
5. Customer shaft key supplied with motor.
6. Dimensions in parentheses () are in English and are for reference only.
7. Tolerances unless otherwise specified.

Detailed motor selection information on both BH series and medium-inertia MH series motors is available on the MOTIONEERING® CD-ROM inside the back cover of this catalog, or visit our website at www.DanaherMotion.com.

BH/12x

<table>
<thead>
<tr>
<th>Model</th>
<th>Mating Plugs Shaft Seal</th>
</tr>
</thead>
<tbody>
<tr>
<td>-41</td>
<td>No</td>
</tr>
<tr>
<td>-43</td>
<td>No</td>
</tr>
<tr>
<td>-51</td>
<td>Yes</td>
</tr>
<tr>
<td>-53</td>
<td>No</td>
</tr>
<tr>
<td>-61</td>
<td>Yes</td>
</tr>
<tr>
<td>-63</td>
<td>No</td>
</tr>
<tr>
<td>-71</td>
<td>Yes</td>
</tr>
<tr>
<td>-73</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Notes:

- Model Mating Plugs Shaft Seal
- "A" MAX.
- "B" 10.90 (.429)
- "C" 11.00 (.433)
- "D" .035 (1.098)
- "E" .08 TIR

Electromate

32
SERVOSTAR® 600 FEATURES

Servo Control
- Easy to tune servo loops
- Advanced sinewave commutation technology provides smooth, precise low-speed control and high speed performance
- Velocity loop bandwidths to 400 Hz
- DC Current control increases high speed peak torque performance for faster cycle rates
- Spase Vector Modulation reduces normal power stage switching losses
- Torque angle control enhances motor performance
- Fully digital control loops
- Compact and attractive rugged metal package for space-saving, modern appearance - metal package minimizes electrical noise emission & susceptibility
- Command modes: Torque, Velocity, Position, Electronic Gearing, Pulse Following, and Motion Task
- Seven current ratings: 3, 6, 10, 14, 20, 40 and 70 amp
- RMS/phase continuous
- 2 to 1 peak/continuous current rating (5 second at peak)
- (S610-30 has 3:1 peak/cont.)

Easy Connectivity
- PROFIBUS-DP communication option card
- DeviceNet communication option card
- Built-in encoder equivalent output can eliminate the need for an additional position feedback device
- RS-232 Communication
- Unique multi-drop configuration allows a PC or PLC to communicate to multiple SERVOSTAR 600 amplifiers via single RS-232 connection
- SERVOSTAR 600’s versatile communication capabilities make it easy to integrate machine data control directly from the factory floor to your information system
- Analog ±10 V, pulse/direction, master encoder, and serial port, I/O command options

Robust Design
- ESD rugged circuit design and fully metallic enclosure
- Full protection against short circuit, overvoltage, undervoltage, heatsink overtemperature, motor overtemperature, overspeed, overcurrent, and feedback loss
- UL, cUL listed, and CE
- Built-in line filter for CE (models up to 20 amp)
- Flash memory

Windows Start-up Environment
- Graphic environment simplifies set up
- PC “Oscilloscope” for measuring real-time motion performance
- Graphical Motion tasking: fully graphical programming environment provides single-axis control capability
- On-board Dynamic Signal Analyzer (DSA) generates Bode plots to improve servo tuning

Configurable I/O
- 2 separate analog inputs (14 and 12 bit resolution) configurable to 6 different command modes

I/O Option Card
- Adds 14 additional digital inputs and 8 digital outputs
- All I/O are optically isolated
- Simple plug in to top face of amplifier

Regenerative Power Sharing
- Patented circuitry allows the DC bus from two or more amplifiers to be connected together allowing regen power to be shared among multiple drives

Optional Built-in Safety Relay
- Switches off the power stage to ensure personnel safety and prevents an unintended restart of the drive, even in the event of a fault
- Allows DC bus to remain on

Motion Capabilities
- The SERVOSTAR 600 can be configured to perform motion control that normally requires a fully programmable drive with a motion language. With the SERVOSTAR 600 there is no programming language to learn; the user only “fill in the blanks” to create common motion tasks
- Fully graphical programming environment
- Make decisions in real time
- Set parameters in real time
- Up to 180 motion tasks can be stored in permanent memory
- Motion Tasks can be linked together
- Linking of motion tasks (sequencing)
- 10 types of homing
- Speed profile/registration control
- Adjustable S curve acceleration
- Absolute and relative (index) moves
- Adjustable Following-Error window
- Adjustable window for the In Position signal
- Linked motion tasks are started:
 - Immediately upon reaching a targeted position
 - From a Digital Input upon reaching the targeted position
 - At Preset Time Delay after the targeted position is reached

APPLICATION EXAMPLES

Cut to length
- Web converting
- Textile industry
- WIRE PULLER
- Glass processing
- Part selection
- Glass processing
- Wrap puller
- Textile industry
- Printing
- Electronics
- Web converting
- Cut to length

ELECTRONIC GEARING 5:1 (MASTER/SLAVE)

BLENDED MOVE
SERVOSTAR® 600 DRIVES

Electrical characteristics
- Closed loop velocity bandwidth up to 400 Hz
- Motor current ripple frequency 16 kHz
- Switching frequency: 8 kHz
- Long term speed regulation (0.01%)
- Position loop update rate 250 µs (4 kHz)
- Velocity loop update rate 62.5 µs (16 kHz)
- Commutation update rate 62.5 µs (16 kHz)

Fault protection
- Output phase to phase and phase to ground short circuit protection
- Overvoltage
- Overtorque (motor and amplifier)
- Feedback loss
- Foldback
- Excessive position error

Environmental
- Operation range
 - Ambient 0 to 45°C (derated above ambient up to 55°C)
 - Storage -25°C to 55°C
- Humidity (non-condensing) max. 85%

Velocity Loop Compensation
- PI Plus controller (PDF Format) or PI controller
- Field tunable and digital repeatability

Position Loop Compensation
- Proportional loop with Feed Forward

Analog I/O
- 2 Configurable Inputs: ±10 V, 12 and 14 bit resolution
- 2 Configurable Outputs: ±10 V, 10 bit resolution

Digital I/O
- 4 Configurable Inputs: 24 volts, PLC-compatible
- 2 Configurable Outputs: 24 volts (open collector), PLC-compatible
- Remote enable Input: 24 V, PLC-compatible Drive Status Relay (BTB/RTO)
- Contact closure rated for 0.5 amps, 24 volt

Pulse or Master/Slave Input
- Pulse command: pulse/direction or quadrature encoder format
- RS-485 receivers
- Up to 16 slave amplifiers can be connected together
- Input ratio is configurable

Position Feedback For User (Encoder Equivalent Output Port)
- Configurable to Encoder Equivalent (ROD) or SSI format
- Encoder Equivalent (ROD): A Quad B with Marker (zero) pulse, RS-485 driver
- SSI (serial synchronous interface): max clock frequency is 1.5 Mhz, RS-485 driver
- Programmable resolution

I/O Extension Card (Option)
- Field Installable
- 14 Digital Inputs 24 V, PLC-compatible
- 8 Digital Outputs 24 V, PLC-compatible
- 24 V PLC Interface

Communications
- RS-232 Interface

Motor Feedback
- Resolver, Sine Encoder

Power Regeneration Options
- Internal
- External - using BAR housed resistors
- Bus Sharing - Distributes regen power among multiple amplifiers

Built-in Parameter Unit
- Displays drive status information
- Parameters: drive address, baud rate, velocity loop tuning, motor type, position output information format, brake, regen type

Motor Brake Control
- 24 V optional holding brake in the motor can be controlled directly by the SERVOSTAR 600

Power Inputs
- 208-480 VAC 3 phase, 50 or 60 Hz, built in line filter for CE requirements (models up to 20 amps)
- 24 VDC@1 amp (3 amps with brake) For Logic

AMPLIFIER RATINGS

<table>
<thead>
<tr>
<th>Model</th>
<th>S603</th>
<th>S606</th>
<th>S610</th>
<th>S610-30</th>
<th>S614</th>
<th>S620</th>
<th>S640</th>
<th>S670</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Continuous Current Per Phase (RMS/phase)</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>14</td>
<td>20</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>Output Peak Current Per Phase (9 sec)</td>
<td>6</td>
<td>12</td>
<td>20</td>
<td>20</td>
<td>28</td>
<td>40</td>
<td>80</td>
<td>140</td>
</tr>
<tr>
<td>Rated Input Power (kVA) @ 480 V</td>
<td>2.3</td>
<td>4.6</td>
<td>8.1</td>
<td>16.6</td>
<td>11.6</td>
<td>16.6</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Internal Power Dissipation Watts</td>
<td>40</td>
<td>60</td>
<td>90</td>
<td>90</td>
<td>160</td>
<td>200</td>
<td>400</td>
<td>700</td>
</tr>
<tr>
<td>AC Input Voltage (3 phase)</td>
<td>208-480</td>
<td>208-480</td>
<td>208-480</td>
<td>208-480</td>
<td>208-480</td>
<td>208-480</td>
<td>208-480</td>
<td>208-480</td>
</tr>
<tr>
<td>Continuous Regen Power Internal Watts</td>
<td>80</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Continuous Regen Power External Watts</td>
<td>500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>1,500</td>
<td>6,000</td>
<td>6,000</td>
</tr>
</tbody>
</table>

DIMENSIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SIZE [amp]</th>
<th>DIM "A"</th>
<th>DIM "B"</th>
<th>DIM "C"</th>
</tr>
</thead>
<tbody>
<tr>
<td>S603</td>
<td>3</td>
<td>76 (2.8)</td>
<td>275 (10.8)</td>
<td>285 (10.4)-273 (10.7)</td>
</tr>
<tr>
<td>S606</td>
<td>6</td>
<td>76 (2.8)</td>
<td>275 (10.8)</td>
<td>285 (10.4)-273 (10.7)</td>
</tr>
<tr>
<td>S610</td>
<td>10</td>
<td>76 (2.8)</td>
<td>275 (10.8)</td>
<td>285 (10.4)-273 (10.7)</td>
</tr>
<tr>
<td>S610-30</td>
<td>10</td>
<td>76 (2.8)</td>
<td>275 (10.8)</td>
<td>285 (10.4)-273 (10.7)</td>
</tr>
<tr>
<td>S614</td>
<td>14</td>
<td>100 (3.9)</td>
<td>275 (10.8)</td>
<td>285 (10.4)-273 (10.7)</td>
</tr>
<tr>
<td>S620</td>
<td>20</td>
<td>150 (4.7)</td>
<td>275 (10.8)</td>
<td>285 (10.4)-273 (10.7)</td>
</tr>
<tr>
<td>S640</td>
<td>40</td>
<td>250 (9.8)</td>
<td>495 (19.5)</td>
<td>300 (11.8)-325 (12.8)</td>
</tr>
<tr>
<td>S670</td>
<td>70</td>
<td>250 (9.8)</td>
<td>495 (19.5)</td>
<td>300 (11.8)-325 (12.8)</td>
</tr>
</tbody>
</table>