100, 110, \& 120 Series Positioning Tables

100 Series Specifications C-5
110 Series Specifications C-13
Thrust Capacity (axial load) C-16
Screw Travel Life C-17
Screw Options C-18
120 Series Specifications C-27
Maximum Acceleration - 120 C-32
Master/Slave - 120 C-33
Table Deflection C-34
Linear Bearing Load Capacity C-36
EOT \& Home Switches C-37
Motor Couplings C-40
Angle Brackets C-42
Carriage Adapter Plates C-44
Motor Mount Options C-46
Power-off Electric Brakes C-48
Linear \& Rotary Encoders C-49

Single or Multiple Axis

LINTECH's 100 \& 110 series positioning tables offer precision performance and design flexibility for use in a wide variety of Motion Control applications.

- Welding
- Test Stands
- Part Insertion
- Laser Positioning
- Liquid Dispensing
- Gluing
- Pick \& Place
- Part Scanning
- Inspection Stations
- General Automation

Semiconductor Processing

Quality Construction

LINTECH's 100 \& 110 series tables are designed to maximize performance while minimizing physical size and cost. These tables use a low friction, preloaded, recirculating linear ball bearing system, which rides on precision ground linear rails. The linear rails are mounted to a precision machined aluminum base, which offers a rigid support over the entire travel of the table's carriage. The load is mounted to a precision machined aluminum carriage, which has threaded stainless steel inserts for high strength and wear life. There are 30 different acme \& ball screw options, that offer high efficiencies and long life at an economical price. These tables are designed to allow for numerous options. They include EOT \& Home switches, linear \& rotary encoders, power-off electric brakes, motor wrap packages and versatile mounting brackets for multiple axis applications.

Available Options

Acme Screws \& Ball Screws

An assortment of acme screws and ball screws can be installed in the $100 \& 110$ series tables, providing solutions to load back driving, high duty cycle, high speed, extreme smoothness, and sensitive positioning applications.

Carriage Adapter Plates \& Vertical Angle Brackets

Optional carriage adapter plates and vertical angle brackets can be mounted directly to the top of various LINTECH positioning tables, thus providing for easy multiple axis configurations.

Cover Plates and Waycovers

For harsh environmental conditions, or for operator protection, these tables can be fitted with either aluminum cover plates, or a waycover. The entire length of the lead screw and linear bearing system will be covered.

End of Travel and Home Switches

The 100 \& 110 series tables can be provided with end of travel (EOT) and home switches mounted and wired for each axis. Most position controllers can utilize the EOT switches to stop carriage motion when the extreme table travel has been reached in either direction. The home switch provides a known mechanical location on the table.

Linear and Rotary Encoders

Incremental encoders can be mounted to the table in order to provide positional data back to either a motion controller, or a digital display.

Motor Adapter Brackets

NEMA 23, NEMA 34, or any metric mount motor can be mounted to a 100 \& 110 series positioning table with the use of adapter brackets.

Turcite Nut With Rolled Ball Screw

This solid polymer nut has no rolling elements in it, and performs very similar to an acme nut. It can provide smoother motion \& less audible noise than most ball nuts, and is ideal for corrosive \& vertical applications.

Other

The 100 \& 110 series tables can accommodate chrome plated linear bearings, rails, \& screws for corrosive environment applications, power-off electric brakes for load locking applications, motor wrap packages for space limited applications, and a hand crank for manually operated applications.

Standard Features - 100 \& 110 Series

- Compact 3.50 inches (89 mm) wide by 2.375 inches (60 mm) tall -100 series
- Compact 5.25 inches (133 mm) wide by 2.375 inches (60 mm) tall -110 series
- Travel lengths from 2 inches (50 mm) to 60 inches (1520 mm)
- Threaded stainless steel inserts in carriage for load mounting
- $0^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ operating temperature
- Recirculating linear ball bearing system
\square Precision ground square rail design
- 2 rails, 2 or 4 bearing carriages

Options - 100 \& 110 Series

\square Chrome plated linear bearings, rails and screws
\square End of travel (EOT) and home switches wired

- CAD drawings available via the internet
- Adapter brackets for non-NEMA motors
- Linear and rotary incremental encoders
- NEMA 23 \& 34 motor wrap packages
- NEMA 34 adapter bracket
- Power-off electric brakes
- Carriage adapter plates
- Vertical angle bracket
\square Turcite nut option
- Motor couplings
- Cover plates
- Waycovers
- Hand crank
- Ball screws:

Rolled - Non-preloaded \& Preloaded Nuts:
0.625 inch diameter, 0.200 inch lead

* 0.500 inch diameter, 0.500 inch lead 0.625 inch diameter, 1.000 inch lead

Precision - Non-preloaded \& Preloaded Nuts:
0.625 inch diameter, 0.200 inch lead

16 mm diameter, 5 mm lead

* 16 mm diameter, 10 mm lead
* 16 mm diameter, 16 mm lead

Ground - Preloaded Nuts Only:
0.625 inch diameter, 0.200 inch lead 16 mm diameter, 5 mm lead 16 mm diameter, 16 mm lead

* (Reduction of travel with preloaded nut)
\square Acme screws:
Rolled - Non-preloaded \& Preloaded Nuts:
0.625 inch diameter, 0.100 inch lead 0.625 inch diameter, 0.200 inch lead 16 mm diameter, 4 mm lead

Carriage Inserts (see pages C-7, C-9 \& C-11)
1 - English mount 2-Metric mount
Screw Options (see pages C-18 to C-23)

Rolled ball screws			Precision ball screws	Ground ball screws
S001-. 500	$\times .500$	NPL	S114-.625 x . 200 NPL	S212-.625 x . 200 PL
S002-. 500	x . 500	PL	S115-. $625 \times .200$ PL	S213-. $625 \times .500 \mathrm{PL}$
S003-. 500	$\times .500$	NPL(T)	S116-16 x 5 NPL	S214-16 x 5 PL
S004-. 500	. 500	PL(T)	S117-16 x 5 PL	S215-16 x 16 PL
S005-.625	. 200	NPL	S118-16 x 10 NPL	
S006-. 625	. 200	PL	S119-16 x 10 PL	Rolled acme screws
S007-. 625	. 200	NPL(T)	S120-16 x 16 NPL	S300-.625 x . 100
S008-. 625	x . 200	PL(T)	S121-16 x 16 PL	S301-. $625 \times .100$
S009-. 625	x 1.000	NPL		S302-. $625 \times .200$
S010-. 625	x 1.000	PL		S303-. $625 \times .200 \mathrm{PL}$
S011-.625	x 1.000	NPL(T)		S304-16 x 4 NPL
S012-. 625	x 1.000	PL(T)	S999 - other	S305-16 x 4 PL

Motor Mount (see pages C-7, C-9, C-11, C-46 \& C-47)

M00 - none	M02 - NEMA 23 mount (E)	M06-NEMA 23 (RH) wrap
M01 - hand crank	M03 - NEMA 23 mount (M)	M07 - NEMA 23 (LH) wrap
	M04 - NEMA 34 mount (E)	M08 - NEMA 34 (RH) wrap
M99 - other	M05 - NEMA 34 mount (M)	M09 - NEMA 34 (LH) wrap

Coupling Options (see pages C-40 to C-41)

C000 - none	C020 to C024-C100	C125 to C129-H100	C400 to C406-G100
C999 - other	C040 to C047-C125	C145 to C154-H131	C425 to C434-G126

Limit \& Home Switches (see pages C-37 to C-39)

L00 - no switches		Mechanical	Reed	Hall	Prox (NPN)	Prox (PNP)
L99 - other	EOT \& home switches	L01	L04	L07	L10	L13
	EOT switches only	L02	L05	L08	L11	L14
	home switch only	L03	L06	L09	L12	L15

Encoder Options (see page C-49)

E00 - none	E02 - rotary $(1000$ lines $/$ rev $)$	E10 - linear $(2500$ lines $/ \mathrm{inch})$	E99 - other
E01 - rotary $(500$ lines $/$ rev $)$	E03 - rotary $(1270$ lines $/$ rev $)$	E11 - linear $(125$ lines $/ \mathrm{mm})$	

Power-off Brakes (see page C-48)
B00 - none B01-24 VDC B02 - 90 VDC B99 - other

(E) \quad English Interface	(NPL) $-\quad$ Non Preloaded	
(LH) $-\quad$ Left Hand	(PL) - Preloaded	
(M) $-\quad$ Metric Interface	(RH) - Right Hand	
		(T) $-\quad$ Turcite Nut

Specifications

Load Capacities	Two (2) Bearing Carriage		Four (4) Bearing Carriage	
Dynamic Horizontal 2 million inches (50 km) of travel	1,550 lbs	$(703 \mathrm{~kg})$	3,100 lbs	$(1406 \mathrm{~kg}$)
Dynamic Horizontal $\quad 50$ million inches ($1270 \mathrm{~km} \mathrm{)} \mathrm{of} \mathrm{travel}$	525 lbs	(238 kg)	1,060 lbs	(480 kg)
Static Horizontal	2,360 lbs	(1070 kg)	4,720 lbs	$(2140 \mathrm{~kg}$)
Dynamic Roll Moment 2 million inches (50 km) of travel	$140 \mathrm{ft}-\mathrm{lbs}$	($190 \mathrm{~N}-\mathrm{m}$)	$280 \mathrm{ft}-\mathrm{lbs}$	($379 \mathrm{~N}-\mathrm{m}$)
Dynamic Roll Moment $\quad 50$ million inches ($1270 \mathrm{~km} \mathrm{)} \mathrm{of} \mathrm{travel}$	47 ft -lbs	($64 \mathrm{~N}-\mathrm{m}$)	$95 \mathrm{ft}-\mathrm{lbs}$	($129 \mathrm{~N}-\mathrm{m}$)
Static Roll Moment	210 ft -lbs	(285 N-m)	$425 \mathrm{ft}-\mathrm{lbs}$	($576 \mathrm{~N}-\mathrm{m}$)
Dyn. Pitch \& Yaw Moment 2 million inches (50 km) of travel	18 ft -lbs	($24 \mathrm{~N}-\mathrm{m}$)	240 ft -lbs	($325 \mathrm{~N}-\mathrm{m}$)
Dyn. Pitch \& Yaw Moment 50 million inches ($1270 \mathrm{~km} \mathrm{)} \mathrm{of} \mathrm{travel}$	6 ft -lbs	$8 \mathrm{~N}-\mathrm{m}$)	82 ft -lbs	($111 \mathrm{~N}-\mathrm{m}$)
Static Pitch \& Yaw Moment	30 ft -lbs	($41 \mathrm{~N}-\mathrm{m}$)	$365 \mathrm{ft}-\mathrm{lbs}$	($495 \mathrm{~N}-\mathrm{m}$)
Each Bearing Dyn. Capacity 2 million inches (50 km) of travel	775 lbs	(351 kg)	775 lbs	(351 kg)
Each Bearing Dyn. Capacity 50 million inches ($1270 \mathrm{~km} \mathrm{)} \mathrm{of} \mathrm{travel}$	263 lbs	(119 kg)	263 lbs	(119 kg)
Each Bearing Static Load Capacity	1,180 lbs	(535 kg)	1,180 lbs	(535 kg)
Thrust Force Capacity 10 million screw revolutions	665 lbs	(302 kg)	665 lbs	(302 kg)
Thrust Force Capacity $\quad 500$ million screw revolutions	180 lbs	(82 kg)	180 lbs	(82 kg)
Maximum Acceleration	$386 \mathrm{in} / \mathrm{sec}^{2}$	9,8 m/ sec^{2})	$772 \mathrm{in} / \mathrm{sec}^{2}$	(19,6 m/sec ${ }^{2}$)
$\mathrm{d}_{1} \quad$ Center to center distance (spread) between the two rails	2.375 in	$(60,3 \mathrm{~mm})$	2.375 in	$(60,3 \mathrm{~mm})$
\mathbf{d}_{2} Center to center distance (spacing) of the bearings on a single rail			2.088 in	$(53,0 \mathrm{~mm})$
\mathbf{d}_{r} CPO version Center distance of the bearing to top of carriage plate surface	. 750 in	(19,1 mm)	. 750 in	(19,1 mm)
$\mathbf{d}_{\mathbf{r}}$ CP1 version Center distance of the bearing to top of carriage plate surface	1.375 in	$(34,9 \mathrm{~mm})$	1.375 in	$(34,9 \mathrm{~mm})$

Other	For Two (2) \& Four (4) Bearing Carriages
Table Material Linear Rail Material Screw Material (see pages C-18 to C-23) Screw Material (see pages C-18 to C-23)	Base, Carriage, End Plates, \& Cover Plate option - 6061 anodized aluminum Stainless Steel Acme Screw - Stainless Steel Rolled Ball, Precision Ball, \& Ground Ball - Case Hardened Steel
Straightness Flatness Orthogonality (multi-axis systems) Friction Coefficient	
Motor Mount Coupling	NEMA 23 \& 34 Mounts, Metric Mounts, Motor Wraps, and Hand Crank Option Three (3) different styles available

Dimensions \& Specifications

- Without Cover Plates -

Model Number	Travel Length inches (mm)	Table Dimensions inches (mm)		Mounting Dimensions inches (mm)				Screw Length inches (mm)	Table (1) Weight lbs (kg)
		A	B	C	D	E	M		
10x402-CP0	$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{gathered} 6.0 \\ (152,4) \end{gathered}$	$\begin{aligned} & 9.875 \\ & (250,8) \end{aligned}$	$\begin{aligned} & 0.500 \\ & (12,7) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	1	8	$\begin{aligned} & 9.25 \\ & (235) \end{aligned}$	$\begin{gathered} 5.1 \\ (2,3) \end{gathered}$
10x404-CP0	$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} 8.0 \\ (203,2) \end{gathered}$	$\begin{aligned} & 11.875 \\ & (301,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{aligned} & 11.25 \\ & (286) \end{aligned}$	$\begin{gathered} 5.9 \\ (2,7) \end{gathered}$
10x406-CP0	$\begin{gathered} 6 \\ (150) \end{gathered}$	$\begin{gathered} 10.0 \\ (254,0) \end{gathered}$	$\begin{aligned} & 13.875 \\ & (352,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{aligned} & 13.25 \\ & (337) \end{aligned}$	$\begin{gathered} 6.7 \\ (3,0) \end{gathered}$
10x408-CP0	$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{gathered} 12.0 \\ (304,8) \end{gathered}$	$\begin{aligned} & 15.875 \\ & (403,2) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$	3	12	$\begin{aligned} & 15.25 \\ & (387) \end{aligned}$	$\begin{gathered} 7.5 \\ (3,4) \end{gathered}$
10x412-CP0	$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{gathered} 16.0 \\ (406,4) \end{gathered}$	$\begin{aligned} & 19.875 \\ & (504,8) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 1.500 \\ & (38,1) \end{aligned}$	5	16	$\begin{aligned} & 19.25 \\ & (489) \end{aligned}$	$\begin{gathered} 9.1 \\ (4,1) \end{gathered}$
10x416-CP0	$\begin{gathered} 16 \\ (405) \end{gathered}$	$\begin{gathered} 20.0 \\ (508,0) \end{gathered}$	$\begin{aligned} & 23.875 \\ & (606,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	5	16	$\begin{gathered} 23.25 \\ (591) \end{gathered}$	$\begin{aligned} & 10.7 \\ & (4,8) \end{aligned}$
10x420-CP0	$\begin{gathered} 20 \\ (505) \end{gathered}$	$\begin{gathered} 24.0 \\ (609,6) \end{gathered}$	$\begin{array}{r} 27.875 \\ (708,0) \end{array}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	7	20	$\begin{gathered} 27.25 \\ (692) \end{gathered}$	$\begin{aligned} & 12.3 \\ & (5,6) \end{aligned}$
10x424-CP0	$\begin{gathered} 24 \\ (605) \end{gathered}$	$\begin{gathered} 28.0 \\ (711.2) \end{gathered}$	$\begin{aligned} & 31.875 \\ & (809,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	9	24	$\begin{gathered} 31.25 \\ (794) \end{gathered}$	$\begin{aligned} & 13.9 \\ & (6,3) \end{aligned}$
10x430-CP0	$\begin{gathered} 30 \\ (760) \end{gathered}$	$\begin{gathered} 34.0 \\ (863,6) \end{gathered}$	$\begin{aligned} & 37.875 \\ & (962,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	11	28	$\begin{gathered} 37.25 \\ (946) \end{gathered}$	$\begin{aligned} & 16.3 \\ & (7,4) \end{aligned}$
10x436-CP0	$\begin{gathered} 36 \\ (910) \end{gathered}$	$\begin{gathered} 40.0 \\ (1016,0) \end{gathered}$	$\begin{aligned} & 43.875 \\ & (1114,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	13	32	$\begin{aligned} & 43.25 \\ & (1099) \end{aligned}$	$\begin{aligned} & 18.7 \\ & (8,5) \end{aligned}$
10x442-CP0	$\begin{gathered} 42 \\ (1060) \end{gathered}$	$\begin{gathered} 46.0 \\ (1168,4) \end{gathered}$	$\begin{aligned} & 49.875 \\ & (1266,8) \end{aligned}$	$\begin{aligned} & 1.750 \\ & (44,4) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	15	36	$\begin{aligned} & 49.25 \\ & (1251) \end{aligned}$	$\begin{aligned} & 21.1 \\ & (9,6) \end{aligned}$
10x448-CP0	$\begin{gathered} 48 \\ (1215) \end{gathered}$	$\begin{gathered} 52.0 \\ (1320,8) \end{gathered}$	$\begin{aligned} & 55.875 \\ & (1419,2) \end{aligned}$	$\begin{aligned} & 2.250 \\ & (57,1) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	17	40	$\begin{aligned} & 55.25 \\ & (1403) \end{aligned}$	$\begin{gathered} 23.5 \\ (10,6) \end{gathered}$
10x454-CP0	$\begin{gathered} 54 \\ (1370) \end{gathered}$	$\begin{gathered} 58.0 \\ (1473,2) \end{gathered}$	$\begin{aligned} & 61.875 \\ & (1571,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	21	48	$\begin{aligned} & 61.25 \\ & (1556) \end{aligned}$	$\begin{gathered} 25.9 \\ (11,4) \end{gathered}$
10x460-CP0	$\begin{gathered} 60 \\ (1520) \end{gathered}$	$\begin{gathered} 64.0 \\ (1625,6) \end{gathered}$	$\begin{aligned} & 67.875 \\ & (1724,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	23	52	$\begin{aligned} & 67.25 \\ & (1708) \end{aligned}$	$\begin{gathered} 28.3 \\ (12,8) \end{gathered}$

- $\quad x=2$; Carriage has 2 bearings; Carriage weight $=1.2 \mathrm{lbs} .(0,54 \mathrm{~kg})$

L $x=4$; Carriage has 4 bearings; Carriage weight $=1.4 \mathrm{lbs} .(0,63 \mathrm{~kg})$

Footnotes:

(1) Weight shown is with a 0.625 inch (16 mm) diameter screw, a 2 bearing carriage [1.2 lbs ($0,54 \mathrm{~kg}$)], a NEMA 23 motor mount [$0.34 \mathrm{lbs}(0,16 \mathrm{~kg})]$, and a C 100 style $[0.09 \mathrm{lbs}(0,04 \mathrm{~kg})]$ coupling. When using a 0.500 inch diameter screw subtract 0.022 lbs per inch ($0,00039 \mathrm{~kg}$ per mm) of screw length for a given model number. When using a 4 bearing carriage add $0.2 \mathrm{lbs}(0,09 \mathrm{~kg})$ to each value.

Dimensions

- Without Cover Plates -

Note: Any 100, 110, 120 or 130 series table can be mounted on top of any second 100, 110, 120 series table by the user, in order to create X-Y multiple axis configurations. The $100-\mathrm{CP} 1,100-\mathrm{CP} 2$, or 120 series tables require one of the Carriage Adapter Plate options. The carriage's threaded stainless steel insert hole pattern exactly matches the base mounting hole pattern on each table, therefore no extra adapter bracket or machining is required. However a precision square tool, or micrometer depth gauge, is required in order to obtain an orthogonality between the two tables of < 30 arc-seconds. The table base, carriage top \& carriage sides are all precision machined. LINTECH's 100 series, 4 bearing carriage, should be used for the bottom axis in a mutiple axes application for better system rigidity, performance, and life.

Dimensions \& Specifications

- With Top Cover Plate Only -

Model Number	Travel Length inches (mm)	Table Dimensions inches (mm)		Mounting Dimensions inches (mm)				Screw Length inches (mm)	Table Weight lbs (kg)
		A	B	C	D	E	M		
10x402-CP1	$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{gathered} 6.0 \\ (152,4) \end{gathered}$	$\begin{gathered} 9.875 \\ (250,8) \end{gathered}$	$\begin{aligned} & 0.500 \\ & (12,7) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	1	8	$\begin{aligned} & 9.25 \\ & (235) \end{aligned}$	$\begin{gathered} 6.1 \\ (2,8) \end{gathered}$
10x404-CP1	$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} 8.0 \\ (203,2) \end{gathered}$	$\begin{aligned} & 11.875 \\ & (301,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{aligned} & 11.25 \\ & (286) \end{aligned}$	$\begin{gathered} 7.0 \\ (3,2) \end{gathered}$
10x406-CP1	$\begin{gathered} 6 \\ (150) \end{gathered}$	$\begin{gathered} 10.0 \\ (254,0) \end{gathered}$	$\begin{aligned} & 13.875 \\ & (352,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{aligned} & 13.25 \\ & (337) \end{aligned}$	$\begin{gathered} 7.9 \\ (3,6) \end{gathered}$
10x408-CP1	$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{gathered} 12.0 \\ (304,8) \end{gathered}$	$\begin{aligned} & 15.875 \\ & (403,2) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$	3	12	$\begin{aligned} & 15.25 \\ & (387) \end{aligned}$	$\begin{gathered} 8.8 \\ (4,0) \end{gathered}$
10x412-CP1	$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{gathered} 16.0 \\ (406,4) \end{gathered}$	$\begin{aligned} & 19.875 \\ & (504,8) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 1.500 \\ & (38,1) \end{aligned}$	5	16	$\begin{aligned} & 19.25 \\ & (489) \end{aligned}$	$\begin{aligned} & 10.6 \\ & (4,8) \end{aligned}$
10x416-CP1	$\begin{gathered} 16 \\ (405) \end{gathered}$	$\begin{gathered} 20.0 \\ (508,0) \end{gathered}$	$\begin{aligned} & 23.875 \\ & (606,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	5	16	$\begin{gathered} 23.25 \\ (591) \end{gathered}$	$\begin{aligned} & 12.3 \\ & (5,6) \end{aligned}$
10x420-CP1	$\begin{gathered} 20 \\ (505) \end{gathered}$	$\begin{gathered} 24.0 \\ (609,6) \end{gathered}$	$\begin{aligned} & 27.875 \\ & (708,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	7	20	$\begin{gathered} 27.25 \\ (692) \end{gathered}$	$\begin{aligned} & 14.0 \\ & (6,3) \end{aligned}$
10x424-CP1	$\begin{gathered} 24 \\ (605) \end{gathered}$	$\begin{gathered} 28.0 \\ (711.2) \end{gathered}$	$\begin{aligned} & 31.875 \\ & (809,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	9	24	$\begin{gathered} 31.25 \\ (794) \end{gathered}$	$\begin{aligned} & 15.9 \\ & (7,2) \end{aligned}$
10x430-CP1	$\begin{gathered} 30 \\ (760) \end{gathered}$	$\begin{gathered} 34.0 \\ (863,6) \end{gathered}$	$\begin{aligned} & 37.875 \\ & (962,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	11	28	$\begin{gathered} 37.25 \\ (946) \end{gathered}$	$\begin{aligned} & 18.6 \\ & (8,4) \end{aligned}$
10x436-CP1	$\begin{gathered} 36 \\ (910) \end{gathered}$	$\begin{gathered} 40.0 \\ (1016,0) \end{gathered}$	$\begin{aligned} & 43.875 \\ & (1114,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	13	32	$\begin{aligned} & 43.25 \\ & (1099) \end{aligned}$	$\begin{aligned} & 21.3 \\ & (9,7) \end{aligned}$
10x442-CP1	$\begin{gathered} 42 \\ (1060) \end{gathered}$	$\begin{gathered} 46.0 \\ (1168,4) \end{gathered}$	$\begin{aligned} & 49.875 \\ & (1266,8) \end{aligned}$	$\begin{aligned} & 1.750 \\ & (44,4) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	15	36	$\begin{aligned} & 49.25 \\ & (1251) \end{aligned}$	$\begin{gathered} 24.0 \\ (10,9) \end{gathered}$
10x448-CP1	$\begin{gathered} 48 \\ (1215) \end{gathered}$	$\begin{gathered} 52.0 \\ (1320,8) \end{gathered}$	$\begin{aligned} & 55.875 \\ & (1419,2) \end{aligned}$	$\begin{aligned} & 2.250 \\ & (57,1) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	17	40	$\begin{aligned} & 55.25 \\ & (1403) \end{aligned}$	$\begin{gathered} 26.7 \\ (12,1) \end{gathered}$
10x454-CP1	$\begin{gathered} 54 \\ (1370) \end{gathered}$	$\begin{gathered} 58.0 \\ (1473,2) \end{gathered}$	$\begin{aligned} & 61.875 \\ & (1571,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	21	48	$\begin{aligned} & 61.25 \\ & (1556) \end{aligned}$	$\begin{gathered} 29.4 \\ (13,3) \end{gathered}$
10x460-CP1	$\begin{gathered} 60 \\ (1520) \end{gathered}$	$\begin{gathered} 64.0 \\ (1625,6) \end{gathered}$	$\begin{aligned} & 67.875 \\ & (1724,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	23	52	$\begin{aligned} & 67.25 \\ & (1708) \end{aligned}$	$\begin{gathered} 32.1 \\ (14,6) \end{gathered}$

- $\mathrm{x}=2$; Carriage has 2 bearings; Carriage weight $=1.5 \mathrm{lbs} .(0,68 \mathrm{~kg})$
$-\mathrm{x}=4$; Carriage has 4 bearings; Carriage weight $=1.7 \mathrm{lbs} .(0,77 \mathrm{~kg})$

Footnotes:

(1) Weight shown is with a 0.625 inch (16 mm) diameter screw, a 2 bearing carriage [$1.5 \mathrm{lbs}(0,68 \mathrm{~kg})$], a NEMA 23 motor mount [$0.34 \mathrm{lbs}(0,16 \mathrm{~kg})$], and a C 100 style $[0.09 \mathrm{lbs}(0,04 \mathrm{~kg})]$ coupling. When using a 0.500 inch diameter screw subtract 0.022 lbs per inch ($0,00039 \mathrm{~kg}$ per mm) of screw length for a given model number. When using a 4 bearing carriage add $0.2 \mathrm{lbs}(0,09 \mathrm{~kg})$ to each value.

Dimensions

- With Top Cover Plate Only -

Note: Any 100, 110, 120, or 130 series table can be mounted on top of any second 100, 110, 120 series table by the user, in order to create $\mathrm{X}-\mathrm{Y}$ multiple axis configurations. The 100-CP1, 100-CP2, or 120 series tables require one of the Carriage Adapter Plate options. The carriage's threaded stainless steel insert hole pattern exactly matches the base mounting hole pattern on each table, therefore no extra adapter bracket or machining is required. However a precision square tool, or micrometer depth gauge, is required in order to obtain an orthogonality between the two tables of < 30 arc-seconds. The table base, carriage top \& carriage sides are all precision machined. LINTECH's 100 series, 4 bearing carriage, should be used for the bottom axis in a mutiple axes application for better system rigidity, performance, and life.

Dimensions \& Specifications

- With Top \& Side Cover Plates -

Model Number	Travel Length inches (mm)	Table Dimensions inches (mm)		Mounting Dimensions inches (mm)				Screw Length inches (mm)	Table (1) Weight lbs (kg)
		A	B	C	D	E	M		
10x402-CP2	$\begin{gathered} 2 \\ (50) \end{gathered}$	$\begin{gathered} 6.0 \\ (152,4) \end{gathered}$	$\begin{aligned} & 9.875 \\ & (250,8) \end{aligned}$	$\begin{aligned} & 0.500 \\ & (12,7) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	1	8	$\begin{aligned} & 9.25 \\ & (235) \end{aligned}$	$\begin{gathered} 6.4 \\ (2,9) \end{gathered}$
10x404-CP2	$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} 8.0 \\ (203,2) \end{gathered}$	$\begin{aligned} & 11.875 \\ & (301,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{aligned} & 11.25 \\ & (286) \end{aligned}$	$\begin{gathered} 7.3 \\ (3,3) \end{gathered}$
10x406-CP2	$\begin{gathered} 6 \\ (150) \end{gathered}$	$\begin{gathered} 10.0 \\ (254,0) \end{gathered}$	$\begin{aligned} & 13.875 \\ & (352,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{aligned} & 13.25 \\ & (337) \end{aligned}$	$\begin{gathered} 8.3 \\ (3,8) \end{gathered}$
10x408-CP2	$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{gathered} 12.0 \\ (304,8) \end{gathered}$	$\begin{aligned} & 15.875 \\ & (403,2) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$	3	12	$\begin{aligned} & 15.25 \\ & (387) \end{aligned}$	$\begin{gathered} 9.2 \\ (4,2) \end{gathered}$
10x412-CP2	$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{gathered} 16.0 \\ (406,4) \end{gathered}$	$\begin{aligned} & 19.875 \\ & (504,8) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 1.500 \\ & (38,1) \end{aligned}$	5	16	$\begin{aligned} & 19.25 \\ & (489) \end{aligned}$	$\begin{aligned} & 11.1 \\ & (5,0) \end{aligned}$
10x416-CP2	$\begin{gathered} 16 \\ (405) \end{gathered}$	$\begin{gathered} 20.0 \\ (508,0) \end{gathered}$	$\begin{aligned} & 23.875 \\ & (606,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	5	16	$\begin{gathered} 23.25 \\ (591) \end{gathered}$	$\begin{aligned} & 13.0 \\ & (5,9) \end{aligned}$
10x420-CP2	$\begin{gathered} 20 \\ (505) \end{gathered}$	$\begin{gathered} 24.0 \\ (609,6) \end{gathered}$	$\begin{aligned} & 27.875 \\ & (708,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	7	20	$\begin{gathered} 27.25 \\ (692) \end{gathered}$	$\begin{aligned} & 14.8 \\ & (6,7) \end{aligned}$
10x424-CP2	$\begin{gathered} 24 \\ (605) \end{gathered}$	$\begin{gathered} 28.0 \\ (711.2) \end{gathered}$	$\begin{aligned} & 31.875 \\ & (809,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	9	24	$\begin{aligned} & 31.25 \\ & (794) \end{aligned}$	$\begin{aligned} & 16.8 \\ & (7,6) \end{aligned}$
10x430-CP2	$\begin{gathered} 30 \\ (760) \end{gathered}$	$\begin{gathered} 34.0 \\ (863,6) \end{gathered}$	$\begin{aligned} & 37.875 \\ & (962,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	11	28	$\begin{gathered} 37.25 \\ (946) \end{gathered}$	$\begin{aligned} & 19.6 \\ & (8,9) \end{aligned}$
10x436-CP2	$\begin{gathered} 36 \\ (910) \end{gathered}$	$\begin{gathered} 40.0 \\ (1016,0) \end{gathered}$	$\begin{aligned} & 43.875 \\ & (1114,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	13	32	$\begin{aligned} & 43.25 \\ & (1099) \end{aligned}$	$\begin{gathered} 22.5 \\ (10,2) \end{gathered}$
10x442-CP2	$\begin{gathered} 42 \\ (1060) \end{gathered}$	$\begin{gathered} 46.0 \\ (1168,4) \end{gathered}$	$\begin{aligned} & 49.875 \\ & (1266,8) \end{aligned}$	$\begin{aligned} & 1.750 \\ & (44,4) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	15	36	$\begin{aligned} & 49.25 \\ & (1251) \end{aligned}$	$\begin{gathered} 25.4 \\ (11,5) \end{gathered}$
10x448-CP2	$\begin{gathered} 48 \\ (1215) \end{gathered}$	$\begin{gathered} 52.0 \\ (1320,8) \end{gathered}$	$\begin{aligned} & 55.875 \\ & (1419,2) \end{aligned}$	$\begin{aligned} & 2.250 \\ & (57,1) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	17	40	$\begin{aligned} & 55.25 \\ & (1403) \end{aligned}$	$\begin{gathered} 28.2 \\ (12,8) \end{gathered}$
10x454-CP2	$\begin{gathered} 54 \\ (1370) \end{gathered}$	$\begin{gathered} 58.0 \\ (1473,2) \end{gathered}$	$\begin{aligned} & 61.875 \\ & (1571,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	21	48	$\begin{aligned} & 61.25 \\ & (1556) \end{aligned}$	$\begin{gathered} 31.1 \\ (14,1) \end{gathered}$
10x460-CP2	$\begin{gathered} 60 \\ (1520) \end{gathered}$	$\begin{gathered} 64.0 \\ (1625,6) \end{gathered}$	$\begin{aligned} & 67.875 \\ & (1724,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	23	52	$\begin{aligned} & 67.25 \\ & (1708) \end{aligned}$	$\begin{gathered} 34.0 \\ (15,4) \end{gathered}$

- $\quad x=2$; Carriage has 2 bearings; Carriage weight $=1.5 \mathrm{lbs} .(0,68 \mathrm{~kg})$

L x $=4$; Carriage has 4 bearings; Carriage weight $=1.7 \mathrm{lbs} .(0,77 \mathrm{~kg})$

Footnotes:

(1) Weight shown is with a 0.625 inch (16 mm) diameter screw, a 2 bearing carriage [$1.5 \mathrm{lbs}(0,68 \mathrm{~kg})$], a NEMA 23 motor mount [$0.34 \mathrm{lbs}(0,16 \mathrm{~kg})$], and a C 100 style $[0.09 \mathrm{lbs}(0,04 \mathrm{~kg})]$ coupling. When using a 0.500 inch diameter screw subtract 0.022 lbs per inch ($0,00039 \mathrm{~kg}$ per mm) of screw length for a given model number. When using a 4 bearing carriage add $0.2 \mathrm{lbs}(0,09 \mathrm{~kg})$ to each value.

Dimensions

- With Top \& Side Cover Plates -

Note: Any 100, 110, 120, or 130 series table can be mounted on top of any second 100, 110, 120 series table by the user, in order to create X-Y multiple axis configurations. The 100-CP1, 100-CP2, or 120 series tables require one of the Carriage Adapter Plate options. The carriage's threaded stainless steel insert hole pattern exactly matches the base mounting hole pattern on each table, therefore no extra adapter bracket or machining is required. However a precision square tool, or micrometer depth gauge, is required in order to obtain an orthogonality between the two tables of < 30 arc-seconds. The table base, carriage top \& carriage sides are all precision machined. LINTECH's 100 series, 4 bearing carriage, should be used for the bottom axis in a mutiple axes application for better system rigidity, performance, and life.

Carriage Length
4-4 inches
Travel Length (see page C-14) 01-1 to 45 inches

Waycovers
WC1 - with waycovers
Carriage Inserts (see pages C-15)
1-English mount 2-Metric mount
Screw Options (see pages C-18 to C-23)

Motor Mount (see pages C-15, C-46 \& C-47)

M00 - none	M02 - NEMA 23 mount (E)	M06 - NEMA 23 (RH) wrap
M01 - hand crank	M03 - NEMA 23 mount (M)	M07 - NEMA 23 (LH) wrap
	M04 - NEMA 34 mount (E)	M08 - NEMA 34 (RH) wrap
M99 - other	M05 - NEMA 34 mount (M)	M09 - NEMA 34 (LH) wrap

Coupling Options (see pages $\mathrm{C}-40$ to $\mathrm{C}-41$)

C000 - none	C020 to C024-C100	C125 to C129-H100	C400 to C406-G100
C999 - other	C040 to C047-C125	C145 to C154-H131	C425 to C434-G126

Limit \& Home Switches (see pages C-37 to C-39)

L00 - no switches		Mechanical	Reed	Hall	Prox (NPN)	Prox (PNP)
L99 - other	EOT \& home switches	L01	L04	L07	L10	L13
	EOT switches only	L02	L05	L08	L11	L14
	home switch only	L03	L06	L09	L12	L15

Encoder Options (see page C-49)

E00 - none	E02 - rotary $(1000$ lines $/ \mathrm{rev})$	E10 - linear $(2500$ lines $/ \mathrm{inch})$	E99 - other
E01 - rotary $(500$ lines $/$ rev $)$	E03 - rotary $(1270$ lines $/ \mathrm{rev})$	E11 - linear $(250$ lines $/ \mathrm{mm})$	

Power-off Brakes (see page C-48)

Specifications

Load Capacities	Two (2) Bearing Carriage		Four (4) Bearing Carriage	
Dynamic Horizontal 2 million inches (50 km) of travel	1,550 lbs	(703 kg)	3,100 lbs	$(1406 \mathrm{~kg}$)
Dynamic Horizontal 50 million inches (1270 km) of travel	525 lbs	(238 kg)	1,060 lbs	(480 kg)
Static Horizontal	2,360 lbs	(1070 kg)	4,720 lbs	$(2140 \mathrm{~kg}$)
Dynamic Roll Moment 2 million inches (50 km) of travel	140 ft -lbs	($190 \mathrm{~N}-\mathrm{m}$)	$280 \mathrm{ft}-\mathrm{lbs}$	($379 \mathrm{~N}-\mathrm{m}$)
Dynamic Roll Moment 50 million inches (1270 km) of travel	47 ft -lbs	($64 \mathrm{~N}-\mathrm{m}$)	95 ft -lbs	($129 \mathrm{~N}-\mathrm{m}$)
Static Roll Moment	210 ft-lbs	(285 N-m)	$425 \mathrm{ft}-\mathrm{lbs}$	($576 \mathrm{~N}-\mathrm{m}$)
Dyn. Pitch \& Yaw Moment 2 million inches (50 km) of travel	18 ft -lbs	($24 \mathrm{~N}-\mathrm{m}$)	240 ft -lbs	($325 \mathrm{~N}-\mathrm{m}$)
Dyn. Pitch \& Yaw Moment 50 million inches (1270 km) of travel	6 ft -lbs	($8 \mathrm{~N}-\mathrm{m}$)	$82 \mathrm{ft}-\mathrm{lbs}$	($111 \mathrm{~N}-\mathrm{m}$)
Static Pitch \& Yaw Moment	30 ft -lbs	($41 \mathrm{~N}-\mathrm{m}$)	$365 \mathrm{ft}-\mathrm{lbs}$	($495 \mathrm{~N}-\mathrm{m}$)
Each Bearing Dyn. Capacity 2 million inches (50 km) of travel	775 lbs	(351 kg)	775 lbs	$(351 \mathrm{~kg}$)
	263 lbs	(119 kg)	263 lbs	(119 kg)
Each Bearing Static Load Capacity	1,180 lbs	(535 kg)	1,180 lbs	(535 kg)
Thrust Force Capacity 10 million screw revolutions	665 lbs	(302 kg)	665 lbs	(302 kg)
Thrust Force Capacity $\quad 500$ million screw revolutions	180 lbs	(82 kg)	180 lbs	(82 kg)
Maximum Acceleration	$386 \mathrm{in} / \mathrm{sec}^{2}$	(9,8 m/ sec^{2})	$772 \mathrm{in} / \mathrm{sec}^{2}$	(19,6 m/ sec^{2})
$\mathrm{d}_{1} \quad$ Center to center distance (spread) between the two rails	2.375 in	$(60,3 \mathrm{~mm})$	2.375 in	$(60,3 \mathrm{~mm})$
$\mathrm{d}_{2} \quad$ Center to center distance (spacing) of the bearings on a single rail			2.088 in	$(53,0 \mathrm{~mm})$
\mathbf{d}_{r} Center distance of the bearing to top of carriage plate surface	. 750 in	$(19,1 \mathrm{~mm})$. 750 in	$(19,1 \mathrm{~mm})$

Other	For Two (2) \& Four (4) Bearing Carriages
Table Material Linear Rail Material Screw Material (see pages C-18 to C-23) Screw Material (see pages C-18 to C-23)	Base, Carriage, End Plates, \& Cover Plate option - 6061 anodized aluminum Stainless Steel Acme Screw - Stainless Steel Rolled Ball, Precision Ball, \& Ground Ball - Case Hardened Steel
Straightness Flatness Orthogonality (multi-axis systems) Friction Coefficient	$\begin{gathered} <0.00013 \mathrm{in} / \mathrm{in} \quad(<3,30 \\ <0.00013 \mathrm{in} / \mathrm{in} \quad(<3,30 \\ <30 \text { microns } / 25 \mathrm{~mm}) \\ \text { arc-seconds } / 25 \mathrm{~mm}) \\ <0.01 \end{gathered}$
Motor Mount Coupling Waycover Material	NEMA 23 \& 34 Mounts, Metric Mounts, Motor Wraps, and Hand Crank Option Three (3) different styles available Hypilon Polyester Bellows firmly mounted to carriage \& end plates

Dimensions \& Specifications

- With Waycovers -

Model Number	Travel Length inches (mm)	Table Dimensions inches (mm)		Mounting Dimensions inches (mm)				Screw Length inches (mm)	Table (1) Weight lbs (kg)
		A	B	C	D	E	M		
11x401-WC1	$\begin{gathered} 1.000 \\ (25) \end{gathered}$	$\begin{gathered} 6.250 \\ (158,7) \end{gathered}$	$\begin{aligned} & 9.875 \\ & (250,8) \end{aligned}$	$\begin{aligned} & 0.500 \\ & (12,7) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	1	8	$\begin{aligned} & 9.25 \\ & (235) \end{aligned}$	$\begin{gathered} 6.3 \\ (2,9) \end{gathered}$
11x402-WC1	$\begin{gathered} 2.500 \\ (63) \end{gathered}$	$\begin{aligned} & 8.250 \\ & (203,2) \end{aligned}$	$\begin{aligned} & 11.875 \\ & (301,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{aligned} & 11.25 \\ & (286) \end{aligned}$	$\begin{gathered} 7.3 \\ (3,3) \end{gathered}$
11x404-WC1	$\begin{gathered} 4.000 \\ (100) \end{gathered}$	$\begin{aligned} & 10.250 \\ & (260,3) \end{aligned}$	$\begin{aligned} & 13.875 \\ & (352,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{aligned} & 13.25 \\ & (337) \end{aligned}$	$\begin{gathered} 8.2 \\ (3,7) \end{gathered}$
11x405-WC1	$\begin{gathered} 5.500 \\ (139) \end{gathered}$	$\begin{aligned} & 12.250 \\ & (311,1) \end{aligned}$	$\begin{aligned} & 15.875 \\ & (403,2) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$	3	12	$\begin{aligned} & 15.25 \\ & (387) \end{aligned}$	$\begin{gathered} 9.2 \\ (4,2) \end{gathered}$
11x408-WC1	$\begin{aligned} & 8.500 \\ & (215) \end{aligned}$	$\begin{aligned} & 16.250 \\ & (412,7) \end{aligned}$	$\begin{aligned} & 19.875 \\ & (504,8) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 1.500 \\ & (38,1) \end{aligned}$	5	16	$\begin{aligned} & 19.25 \\ & (489) \end{aligned}$	$\begin{aligned} & 11.1 \\ & (5,0) \end{aligned}$
11x411-WC1	$\begin{gathered} 11.500 \\ (292) \end{gathered}$	$\begin{aligned} & 20.250 \\ & (514,3) \end{aligned}$	$\begin{array}{r} 23.875 \\ (606,4) \end{array}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	5	16	$\begin{gathered} 23.25 \\ (591) \end{gathered}$	$\begin{aligned} & 13.0 \\ & (5,9) \end{aligned}$
11x414-WC1	$\begin{gathered} 14.375 \\ (365) \end{gathered}$	$\begin{array}{r} 24.250 \\ (615,9) \end{array}$	$\begin{aligned} & 27.875 \\ & (708,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	7	20	$\begin{gathered} 27.25 \\ (692) \end{gathered}$	$\begin{aligned} & 14.9 \\ & (6,8) \end{aligned}$
11x417-WC1	$\begin{gathered} 17.375 \\ (441) \end{gathered}$	$\begin{aligned} & 28.250 \\ & (717,5) \end{aligned}$	$\begin{aligned} & 31.875 \\ & (809,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	9	24	$\begin{gathered} 31.25 \\ (794) \end{gathered}$	$\begin{aligned} & 16.9 \\ & (7,7) \end{aligned}$
11x422-WC1	$\begin{gathered} 22.000 \\ (558) \end{gathered}$	$\begin{aligned} & 34.250 \\ & (869,9) \end{aligned}$	$\begin{aligned} & 37.875 \\ & (962,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	11	28	$\begin{gathered} 37.25 \\ (946) \end{gathered}$	$\begin{aligned} & 19.8 \\ & (9,0) \end{aligned}$
11x428-WC1	$\begin{gathered} 28.000 \\ (711) \end{gathered}$	$\begin{aligned} & 40.250 \\ & (1022,3) \end{aligned}$	$\begin{aligned} & 43.875 \\ & (1114,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	13	32	$\begin{aligned} & 43.25 \\ & (1099) \end{aligned}$	$\begin{gathered} 22.6 \\ (10,2) \end{gathered}$
11x431-WC1	$\begin{gathered} 31.750 \\ (806) \end{gathered}$	$\begin{aligned} & 46.250 \\ & (1174,7) \end{aligned}$	$\begin{aligned} & 49.875 \\ & (1266,8) \end{aligned}$	$\begin{aligned} & 1.750 \\ & (44,4) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	15	36	$\begin{aligned} & 49.25 \\ & (1251) \end{aligned}$	$\begin{aligned} & 25.5 \\ & (11,6) \end{aligned}$
11x436-WC1	$\begin{gathered} 36.375 \\ (923) \end{gathered}$	$\begin{aligned} & 52.250 \\ & (1327,1) \end{aligned}$	$\begin{aligned} & 55.875 \\ & (1419,2) \end{aligned}$	$\begin{aligned} & 2.250 \\ & (57,1) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	17	40	$\begin{aligned} & 55.25 \\ & (1403) \end{aligned}$	$\begin{gathered} 28.4 \\ (12,9) \end{gathered}$
11x440-WC1	$\begin{gathered} 40.750 \\ (1035) \end{gathered}$	$\begin{aligned} & 58.250 \\ & (1479,5) \end{aligned}$	$\begin{gathered} 61.875 \\ (1571,6) \end{gathered}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	21	48	$\begin{aligned} & 61.25 \\ & (1556) \end{aligned}$	$\begin{gathered} 31.3 \\ (14,2) \end{gathered}$
11x445-WC1	$\begin{gathered} 45.500 \\ (1155) \end{gathered}$	$\begin{array}{r} 64.250 \\ (1631,9) \end{array}$	$\begin{aligned} & 67.875 \\ & (1724,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	23	52	$\begin{aligned} & 67.25 \\ & (1708) \end{aligned}$	$\begin{gathered} 34.1 \\ (15,5) \end{gathered}$

- $\mathrm{x}=2$; Carriage has 2 bearings; Carriage weight $=1.8 \mathrm{lbs} .(0,82 \mathrm{~kg})$
$-\mathrm{x}=4$; Carriage has 4 bearings; Carriage weight $=2.0 \mathrm{lbs} .(0,91 \mathrm{~kg})$

Footnotes:

(1) Weight shown is with a 0.625 inch (16 mm) diameter screw, a 2 bearing carriage [1.8 $\mathrm{lbs}(0,82 \mathrm{~kg})]$, a NEMA 23 motor mount [$0.34 \mathrm{lbs}(0,16 \mathrm{~kg})]$, and a C100 style [$0.09 \mathrm{lbs}(0,04 \mathrm{~kg})$] coupling. When using a 0.500 inch diameter screw subtract 0.022 lbs per inch ($0,00039 \mathrm{~kg}$ per mm) of screw length for a given model number. When using a 4 bearing carriage add $0.2 \mathrm{lbs}(0,09 \mathrm{~kg})$ to each value.

Dimensions

- With Waycovers -

(1) This value is center to center distance (spread) between the two rails $\left(d_{1}\right)$.
(2) This value is center to center distance (spacing) of the bearings on a single rail $\left(d_{2}\right)$.
(3) This value is center distance of the bearing to top of carriage plate surface $\left(d_{r}\right)$.

Note: A pair of stainless steel retainer strips are furnished with each 110 series table. These strips are used to prevent the waycovers from falling away from the table in vertical, inverted or side mounted applications and must be installed by the user mounting surface. The retainer strips attach to the table via the base mounting screws.

Note: Any 100, 110, 120 or 130 series table can be mounted on top of any second 100, 110, 120 series table by the user, in order to create X - Y multiple axis configurations. The 100-CP1, 100-CP2, or 120 series tables require one of the Carriage Adapter Plate options. The carriage's threaded stainless steel insert hole pattern exactly matches the base mounting hole pattern on each table, therefore no extra adapter bracket or machining is required. However a precision square tool, or micrometer depth gauge, is required in order to obtain an orthogonality between the two tables of < 30 arc-seconds. The table base, carriage top \& carriage sides are all precision machined. LINTECH's 100 series, 4 bearing carriage, should be used for the bottom axis in a mutiple axes application for better system rigidity, performance, and life.

Thrust Capacity (axial load)

The life of the screw end support bearings can be estimated by evaluating the applied axial (thrust) load. The applied load "as seen by the bearings" depends upon the table orientation. Typically, the extra force acting upon the bearings during the acceleration interval is offset by a reduction in force during the deceleration interval. Therefore, evaluating the life of the bearings at a constant speed is adequate. The life of the screw end support bearings may not be the limiting element for a given application. See page C-17 for load/life capacity of acme and ball screw nuts.

Horizontal Application
$F=(W \times \mu)+E$
Vertical Application
F = W + E
$L=\left[\frac{R}{F \times S}\right]^{3} \times B$

B = 2 (for millions of revolutions)
E = externally applied extra forces
$\mathbf{F}=$ applied axial load (as seen by the bearings)
L = calculated life (millions of revolutions)
$\mathbf{R}=$ dynamic load capacity of bearings at 2 million screw revolutions (see below)
$\mathbf{S}=$ safety factor (1 to 8)
$\mathbf{W}=$ user mounted load weight to carriage
$\boldsymbol{\mu}=$ coefficient of friction for linear bearing system (0.01)

Screw End Supports	Number of Screw Revolutions millions of screw revolutions						
	Static	1	2	10	50	100	500
Thrust Capacity lbs (kg)	1,355 (615)	1,355 (615)	1,145 (519)	665 (302)	395 (179)	305 (138)	180 (82)

Screw Travel Life

The life of an acme or ball screw can be estimated by evaluating the load applied to the nut. The applied load "as seen by the screw nut" depends upon the table orientation. Typically, the extra force acting upon the screw nut during the acceleration interval is offset by a reduction in force during the deceleration interval. Therefore, evaluating the life of the screw nut at a constant speed is adequate. The life of the screw nut may not be the limiting element for a given application. See page C-16 for load/life capacity of the screw end support bearings.

Horizontal Application
$F=(W \times \mu)+E$

Vertical Application

F = W + E
$L=\left[\frac{R}{F \times S}\right]^{3} \times B$
$\mathbf{B}=$ either 1 (for millions of inches) or 25 (for Km)
E = externally applied extra forces
F $=$ applied axial load (as seen by screw nut)
$\mathbf{L}=$ calculated travel life (millions of inches or Km)
$\mathbf{R}=$ rated dynamic load capacity of screw nut at 1 million inches of travel or 25 Km (see pages $\mathrm{C}-20$ to $\mathrm{C}-23$)
$\mathbf{S}=$ safety factor (1 to 8)
$\mathbf{W}=$ user mounted load weight to carriage
$\boldsymbol{\mu}=$ coefficient of friction for linear bearing system (0.01)

Screws - Acme \& Ball

Acme screws use a turcite (polymer), or bronze nut. The nut threads ride in the matching acme screw threads, much like the ordinary nut and bolt system. This produces a higher friction (lower efficiency) system than a ball screw assembly, since there are no rolling elements between the nut and the acme screw threads. For applications requiring low speeds, noise and duty cycles, an acme screw works fine. Also, an acme screw is a good choice for most vertical applications, as it typically prevents back driving of the attached load.

Ball screws are the screw of choice for high duty cycle, high speed, and long life applications. The $100 \& 110$ series tables can be fitted with an assortment of ball screws. The ball screw nut uses one or more circuits of recirculating steel balls which roll between the nut and ball screw grooves, providing an efficient low friction system. Using a higher lead
ball screw (for example a 0.500 inch lead instead of a 0.200 inch lead) will offer greater carriage speed for applications requiring rapid traverse, or fast, short incremental moves. Low wear and long life are key features of a ball screw system.

LINTECH provides three different ball screw configurations. The rolled ball screw system utilizes a tapped nut with a standard accuracy grade rolled screw. The precision ball screw system utilizes a ground nut with a higher accuracy grade rolled screw. The ground ball screw system utilizes a ground nut with a high accuracy precision ground screw.

Some screws are available with preloaded nuts. The preloaded nut assembly offers high bidirectional repeatability by eliminating backlash.

Consideration	Acme Screw	Ball Screws			Comments
		Rolled	Precision	Ground	
Audible noise	least audible noise	most audible noise	less audible noise than rolled screw	less audible noise than precision screw	Acme: no rolling elements provide for quiet operation. Ball: recirculating balls in nut assembly transmit audible noise during motion; due to more accurate machining procedures - precision \& ground ball screws are quieter than rolled ball screws.
Back Driving Loads	may prevent back driving	can easily back drive a load	can easily back drive a load	can easily back drive a load	Acme: good for light loads \& vertical applications. Ball: recirculating balls in nut assembly produce a low friction system; vertical applications may require a brake to hold the load when no power is applied to the motor.
Backlash non-preloaded nut	will increase with wear	constant	constant	constant	Acme: preloaded nut assembly eliminates backlash. Ball: preloaded nut assembly eliminates backlash.
Duty Cycle	low to medium $\text { (< } 50 \% \text {) }$	high (100 \%)	high (100 \%)	high (100 \%)	Acme: low duty cycle due to high sliding friction. Ball: high duty cycle due to recirculating balls in nut assembly; high efficiency \& low friction system.
Life	shorter due to higher friction	long	long	long	Acme: mechanical wear related to duty cycle, load \& speed. Ball: minimal wear if operated in proper environment, within load specifications, and periodically lubricated.
Relative - Cost	slightly more than rolled ball	least expensive	slightly more than rolled ball	most expensive	Acme: a little more expensive than the rolled ball screw. Ball: due to more accurate manufacturing procedures precision rolled \& ground ball screws are more expensive.
Screw Efficiency	Iow 40 \% -Acme 60 \% -Turcite	high (90\%)	high (90\%)	high (90 \%)	Acme: low efficiency due to high sliding friction. Ball: high efficiency due to recirculating balls in nut assembly - low friction system.
Smoothness	can be smooth	least smooth	medium smoothness	smoothest	Acme: due to friction can start/stop at very low speeds. Ball: smoothness is constant through a wide speed range; due to more accurate manufacturing procedures precision rolled \& ground ball screws are smoother than rolled ball screws.
Speeds	Iow	high	high	high	Acme: high friction can causes excess heat \& wear at high speeds. Ball: recirculating balls in nut provide for a high speed system due to low friction \& high efficiency.

Screws - Acme \& Ball

100 Series	110 Series		Maximum Safe Table Operating Speed in/sec ($\mathrm{mm} / \mathrm{sec}$)								
Model Travel Number Length in (mm)	Model Travel Number Length in (mm)		Screw								
			0.500 dia. 0.500 lead	0.625 dia. 0.100 lead	$0.625 \text { dia. }$ $0.200 \text { lead }$	0.625 dia. 0.500 lead	0.625 dia. 1.000 lead	16 mm dia. 4 mm lead	16 mm dia. 5 mm lead	16 mm dia. 10 mm lead	16 mm dia. 16 mm lead
$10 \times 402 \underset{(50)}{2}$	11x401	$\begin{aligned} & 1.0 \\ & (50) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 50.0 \\ (1270) \end{gathered}$	$\begin{gathered} 7.9 \\ (201) \end{gathered}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 31.5 \\ & (800) \end{aligned}$
$10 \times 404 \begin{gathered}4 \\ (100)\end{gathered}$	11x402	$\begin{aligned} & 2.5 \\ & (63) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 50.0 \\ (1270) \end{gathered}$	$\begin{gathered} 7.9 \\ (201) \end{gathered}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 31.5 \\ & (800) \end{aligned}$
$10 \times 406 \begin{gathered}6 \\ (150)\end{gathered}$	11×404	$\begin{gathered} 4.0 \\ (100) \end{gathered}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 50.0 \\ (1270) \end{gathered}$	$\begin{gathered} 7.9 \\ (201) \end{gathered}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 31.5 \\ & (800) \end{aligned}$
$10 \times 408 \stackrel{8}{(200)}$	11×405	$\begin{gathered} 5.5 \\ (139) \end{gathered}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 50.0 \\ (1270) \end{gathered}$	$\begin{gathered} 7.9 \\ (201) \end{gathered}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 31.5 \\ & (800) \end{aligned}$
$10 \times 412 \begin{gathered}12 \\ (300)\end{gathered}$	11x408	$\begin{gathered} 8.5 \\ (215) \end{gathered}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 50.0 \\ (1270) \end{gathered}$	$\begin{gathered} 7.9 \\ (201) \end{gathered}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 31.5 \\ & (800) \end{aligned}$
$10 \times 416 \begin{gathered}16 \\ (405)\end{gathered}$	11×411	$\begin{aligned} & 11.5 \\ & (292) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 50.0 \\ (1270) \end{gathered}$	$\begin{gathered} 7.9 \\ (201) \end{gathered}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 31.5 \\ & (800) \end{aligned}$
$10 \times 420 \begin{gathered}20 \\ (505)\end{gathered}$	11×414	$\begin{aligned} & 14.3 \\ & (365) \end{aligned}$	$\begin{aligned} & 21.5 \\ & (546) \end{aligned}$	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{aligned} & 10.0 \\ & (254) \end{aligned}$	$\begin{aligned} & 25.0 \\ & (635) \end{aligned}$	$\begin{gathered} 50.0 \\ (1270) \end{gathered}$	$\begin{gathered} 7.9 \\ (201) \end{gathered}$	$\begin{gathered} 9.8 \\ (249) \end{gathered}$	$\begin{aligned} & 19.7 \\ & (500) \end{aligned}$	$\begin{aligned} & 31.5 \\ & (800) \end{aligned}$
$10 \times 424 \begin{gathered} 24 \\ (605) \end{gathered}$	11×417	$\begin{aligned} & 17.3 \\ & (441) \end{aligned}$	$\begin{aligned} & 16.1 \\ & (409) \end{aligned}$	$\begin{gathered} 4.2 \\ (107) \end{gathered}$	$\begin{gathered} 8.4 \\ (213) \end{gathered}$	$\begin{aligned} & 21.0 \\ & (533) \end{aligned}$	$\begin{gathered} 41.9 \\ (1064) \end{gathered}$	$\begin{gathered} 6.5 \\ (165) \end{gathered}$	$\begin{gathered} 8.2 \\ (208) \end{gathered}$	$\begin{aligned} & 16.4 \\ & (416) \end{aligned}$	$\begin{aligned} & 26.2 \\ & (665) \end{aligned}$
$10 \times 430 \begin{gathered}30 \\ (760)\end{gathered}$	11x422	$\begin{aligned} & 22.0 \\ & (558) \end{aligned}$	$\begin{aligned} & 11.2 \\ & (284) \end{aligned}$	$\begin{array}{r} 2.9 \\ (74) \end{array}$	$\begin{gathered} 5.8 \\ (147) \end{gathered}$	$\begin{aligned} & 14.5 \\ & (368) \end{aligned}$	$\begin{aligned} & 29.0 \\ & (737) \end{aligned}$	$\begin{gathered} 4.5 \\ (114) \end{gathered}$	$\begin{gathered} 5.6 \\ (142) \end{gathered}$	$\begin{aligned} & 11.3 \\ & (287) \end{aligned}$	$\begin{aligned} & 18.1 \\ & (460) \end{aligned}$
$10 \times 436 \begin{gathered}36 \\ (910)\end{gathered}$	11×428	$\begin{aligned} & 28.0 \\ & (711) \end{aligned}$	$\begin{gathered} 8.2 \\ (208) \end{gathered}$	$\begin{aligned} & 2.1 \\ & (53) \end{aligned}$	$\begin{gathered} 4.2 \\ (107) \end{gathered}$	$\begin{aligned} & 10.6 \\ & (269) \end{aligned}$	$\begin{aligned} & 21.3 \\ & (541) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (84) \end{aligned}$	$\begin{gathered} 4.1 \\ (104) \end{gathered}$	$\begin{gathered} 8.3 \\ (211) \end{gathered}$	$\begin{aligned} & 13.3 \\ & (338) \end{aligned}$
$10 \times 442 \begin{gathered}\text { (1060) }\end{gathered}$	11×431	$\begin{aligned} & 31.7 \\ & (806) \end{aligned}$	$\begin{gathered} 6.2 \\ (157) \end{gathered}$	$\begin{aligned} & 1.6 \\ & (41) \end{aligned}$	$\begin{aligned} & 3.3 \\ & (81) \end{aligned}$	$\begin{gathered} 8.1 \\ (206) \end{gathered}$	$\begin{aligned} & 16.3 \\ & (414) \end{aligned}$	$\begin{aligned} & 2.5 \\ & \text { (63) } \end{aligned}$	$\begin{aligned} & 3.2 \\ & (81) \end{aligned}$	$\begin{gathered} 6.3 \\ (160) \end{gathered}$	$\begin{aligned} & 10.1 \\ & (257) \end{aligned}$
$10 \times 448 \stackrel{48}{4815)}$	11×436	$\begin{aligned} & 36.3 \\ & (923) \end{aligned}$	$\begin{gathered} 4.9 \\ (124) \end{gathered}$	$\begin{aligned} & 1.3 \\ & \text { (33) } \end{aligned}$	$\begin{aligned} & 2.5 \\ & (63) \end{aligned}$	$\begin{gathered} 6.4 \\ (162) \end{gathered}$	$\begin{aligned} & 12.8 \\ & (325) \end{aligned}$	$\begin{aligned} & 2.0 \\ & (51) \end{aligned}$	$\begin{gathered} 2.5 \\ (63) \end{gathered}$	$\begin{gathered} 5.0 \\ (127) \end{gathered}$	$\begin{gathered} 8.0 \\ (203) \end{gathered}$
$10 \times 454 \begin{gathered} 54 \\ (1370) \end{gathered}$	11×440	$\begin{gathered} 40.7 \\ (1035) \end{gathered}$	$\begin{gathered} 4.0 \\ (102) \end{gathered}$	$\begin{aligned} & 1.0 \\ & (25) \end{aligned}$	$\begin{aligned} & 2.0 \\ & (51) \end{aligned}$	$\begin{gathered} 5.2 \\ (132) \end{gathered}$	$\begin{aligned} & 10.4 \\ & (264) \end{aligned}$	$\begin{aligned} & 1.6 \\ & (41) \end{aligned}$	$\begin{aligned} & 2.0 \\ & (51) \end{aligned}$	$\begin{gathered} 4.0 \\ (102) \end{gathered}$	$\begin{gathered} 6.5 \\ (165) \end{gathered}$
$10 \times 460 \underset{(1520)}{60}$	11×445	$\begin{gathered} 45.5 \\ (1155) \end{gathered}$	$\begin{aligned} & 3.3 \\ & (84) \end{aligned}$	$\begin{aligned} & 0.8 \\ & (20) \end{aligned}$	$\begin{aligned} & 1.7 \\ & (43) \end{aligned}$	$\begin{gathered} 4.3 \\ (109) \end{gathered}$	$\begin{gathered} 8.6 \\ (218) \end{gathered}$	$\begin{aligned} & 1.3 \\ & (33) \end{aligned}$	$\begin{gathered} 1.7 \\ (43) \end{gathered}$	$\begin{aligned} & 3.3 \\ & (84) \end{aligned}$	$\begin{gathered} 5.3 \\ (135) \end{gathered}$

Footnotes:

(1) These listed speeds are a mechanical limitation. The maximum speed of a positioning table depends on the screw diameter, screw lead, screw length, and the screw end bearing support configuration. LINTECH uses a fixed-simple screw end bearing support configuration in its positioning tables. The correct motor \& drive system needs to be selected in order to obtain the above maximum table speeds.

Screws - Acme \& Ball

Footnotes:

(1) Dynamic load capacity of screw based on 1 million inches of travel (25 Km).
(2) There is a 2.2 inch $(55,9 \mathrm{~mm})$ reduction of carriage travel (from the listed travel) when using a preloaded nut with this screw option for the 100 series. For the 110 series 1 inch listed travel (this option is not available), for the 2.5 inch listed travel (reduction of travel to 1.0 inch), for the 4 inch listed travel (reduction of travel to 2.75 inches), for the 5.5 inch listed travel (reduction of travel to 4.5 inches), for the 8.0 inch listed travel (reduction of travel to 7.75 inches).

Screws - Acme \& Ball

SCREW		PRECISION BALL SCREWS							
		Dyn. ${ }^{(1)}$ Capacity Ibs (kg)	Static Capacity lbs (kg)	$\begin{gathered} \text { Screw } \\ \text { Efficiency } \\ \% \end{gathered}$	$\begin{gathered} \text { Breakaway } \\ \text { Torque } \\ \text { oz-in } \\ (\mathrm{N}-\mathrm{m}) \end{gathered}$	Position Accuracy inch/ft (microns/300 mm)	Backlash inches (microns)	Unidirectional Repeatability inches (microns)	Bidirectional Repeatability inches (microns)
	Non-preloaded (S114) Preloaded (S115)	$\begin{gathered} 876 \\ (397) \\ \\ 788 \\ (357) \end{gathered}$	$\begin{aligned} & 2,700 \\ & (1224) \\ & \\ & 2,430 \\ & (1102) \end{aligned}$	90	$\begin{gathered} 10 \\ (0,07) \\ \\ 20 \\ (0,14) \end{gathered}$	$<\underset{(50)}{0.002}$	$<\underset{(76)}{0.003}$ 0	$+/-0.0002$ (5)	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{0.81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$
	Non-preloaded (S116) Preloaded (S117)	$\begin{gather*} 876 \\ (397) \tag{76}\\ \\ 788 \\ (357) \end{gather*}$	$\begin{aligned} & 2,700 \\ & (1224) \\ & \\ & 2,430 \\ & (1102) \end{aligned}$	90	$\begin{gathered} 10 \\ (0,07) \\ \\ 20 \\ (0,14) \end{gathered}$	$<\underset{(50)}{0.002}$	<0.003 0	$+/-0.0002$ (5)	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$
	Non-preloaded (S118) (2) Preloaded (S119)	$\begin{gathered} 1,080 \\ (489) \\ \\ 972 \\ (440) \end{gathered}$	$\begin{aligned} & 2,630 \\ & (1192) \\ & \\ & 2,365 \\ & (1072) \end{aligned}$	90	$\begin{gathered} 15 \\ (0,11) \\ \\ 25 \\ (0,18) \end{gathered}$	$<\underset{(50)}{0.002}$	$<\underset{(76)}{0.003}$ 0	$+/-0.0002$ (5)	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$
	Non-preloaded (S120) (3) Preloaded (S121)	$\begin{gather*} 819 \\ (371) \tag{76}\\ \\ 737 \\ (334) \end{gather*}$	$\begin{aligned} & 1,620 \\ & (734) \\ & \\ & 1,455 \\ & (659) \end{aligned}$	90	$\begin{gathered} 20 \\ (0,14) \\ \\ 35 \\ (0,24) \end{gathered}$	$<\underset{(50)}{0.002}$	<0.003 0	$+/-0.0002$ (5)	$\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$

Footnotes:

(1) Dynamic load capacity of screw based on 1 million inches of travel (25 Km).
(2) There is a 0.5 inch $(12,7 \mathrm{~mm})$ reduction of carriage travel (from the listed travel length) when using a preloaded nut with this screw option for the 100 series.
(3) There is a 0.7 inch ($17,8 \mathrm{~mm}$) reduction of carriage travel (from the listed travel length) when using a preloaded nut with this screw option for the 100 series.

Screws - Acme \& Ball

SCREW	GROUND BALL SCREWS ${ }^{(2)}$									
	$\begin{gathered} \text { Dyn. }^{(1)} \\ \text { Capacity } \\ \text { Ibs } \\ \text { (kg) } \end{gathered}$	Static Capacity lbs (kg)	Screw Efficiency \%	Breakaway Torque oz-in $(\mathrm{N}-\mathrm{m})$	Position Accuracy inch/ft (microns $/ 300 \mathrm{~mm}$)	Backlash inches (microns)	Unidirectional Repeatability inches (microns)	Bidirectional Repeatability inches (microns)		
0.625 dia., 0.200 lead Preloaded (S212)	$\begin{aligned} & 987 \\ & (447) \end{aligned}$	$\begin{aligned} & 3,080 \\ & (1397) \end{aligned}$	90	$\begin{gathered} 20 \\ (0,14) \end{gathered}$	$\underset{(30)}{0.0012}$	0	$+\underset{(2,5)}{0.0001}$		$\underset{(2,5)}{0.0001} \text { to }$	$\begin{gathered} -0.0001 \\ (2,5) \end{gathered}$
0.625 dia., 0.500 lead Preloaded (S213)	$\begin{aligned} & 1430 \\ & (649) \end{aligned}$	$\begin{aligned} & 4,191 \\ & (1901) \end{aligned}$	90	$\begin{gathered} 30 \\ (0,21) \end{gathered}$	$\underset{(30)}{0.0012}$	0	$+\underset{(2,5)}{0.0001}$		$\underset{(2,5)}{0.0001} \text { to }$	$\begin{gathered} -0.0001 \\ (2,5) \end{gathered}$
16 mm dia., 5 mm lead Preloaded (S214)	$\begin{aligned} & 987 \\ & (447) \end{aligned}$	$\begin{aligned} & 3,080 \\ & (1397) \end{aligned}$	90	$\begin{gathered} 20 \\ (0,14) \end{gathered}$	$\underset{(30)}{0.0012}$	0	$+\underset{(2,5)}{0.0001}$		$\underset{(2,5)}{0.0001} \text { to }$	$-\begin{gathered} 0.0001 \\ (2,5) \end{gathered}$
16 mm dia., 16 mm lead Preloaded (S215)	$\begin{gathered} 910 \\ (412) \end{gathered}$	$\begin{aligned} & 1,800 \\ & (816) \end{aligned}$	90	$\begin{gathered} 35 \\ (0,24) \end{gathered}$	$\underset{(30)}{0.0012}$	0	$+\underset{(2,5)}{0.0001}$		$\underset{(2,5)}{0.0001} \text { to }$	$\underset{(2,5)}{-0.0001}$

Footnotes:

(1) Dynamic load capacity of screw based on 1 million inches of travel (25 Km).
(2) The Ground Ball Screw options are only available in travel lengths up to 36 inches for the 100 series and up to 28 inches of travel for the 110 series.

Screws - Acme \& Ball

Footnotes:

(1) Dynamic load capacity of screw based on 1 million inches of travel (25 Km).

Single or Multiple Axis

LINTECH's 120 series positioning tables offer precision performance and design flexibility for use in a wide variety of Motion Control applications.

\author{

- Welding
 - Test Stands
 - Part Insertion
 - Laser Positioning
 - Liquid Dispensing
 - Gluing
 - Pick \& Place
 - Part Scanning
 - Inspection Stations
 - General Automation
 Semiconductor Processing
}

Quality Construction

LINTECH's 120 series tables are designed to handle light loads at very high speeds. These tables use a low friction, preloaded, recirculating linear ball bearing system, which rides on precision ground linear rails. The linear rails are mounted to a precision machined aluminum base, which offers a rigid support over the entire travel of the table's carriage. The load is mounted to a precision machined aluminum carriage, which has threaded stainless steel inserts for high strength and wear life. The drive system uses two pulleys, along with a high strength, steel reinforced polyurethane belt, which provides 3.543 inches (90 mm) of linear movement per revolution of the input shaft. The simple belt tensioning system allows for easy adjustment of belt tension by the user. NEMA 23 \& 34 motor mounts, or gearhead mounts are available as well as planetary gearheads.

Available Options

Carriage Adapter Plates \& Vertical Angle Brackets

Optional carriage adapter plates and vertical angle brackets can be mounted directly to the top of various LINTECH positioning tables, thus providing for easy multiple axis configurations.

End of Travel and Home Switches

The 120 series tables can be provided with end of travel (EOT) and home switches mounted and wired for each axis. Most position controllers can utilize the EOT switches to stop carriage motion when the extreme table travel has been reached in either direction. The home switch provides a known mechanical location on the table.

Motor Adapter Brackets

NEMA 34 or any metric mount motor can be mounted to a 120 series positioning table with the use of adapter brackets.

Rotary Encoders

Incremental rotary encoders can be mounted to the table in order to provide positional data back to either a motion controller, or a digital display.

Planetary Gearheads

LINTECH provides planetary gearheads which can be used with a 120 series. These gearheads are provided in either an in-line or right angle version, with standard gear ratios of 1:1, $2: 1$ \& 3:1. Gearheads may be required for applications which have a large mismatch of load to motor inertias. They also help reduce the torque required from the motor for a particular application.

Other

The 120 series tables can accommodate chrome plated linear bearings \& rails for corrosive environment applications and power-off electric brakes for load locking applications.

Standard Features - 120 Series

- Compact 3.500 inches (89 mm) wide by 3.000 inches (76 mm) tall
- Travel lengths from 4 inches (100 mm) to 10 feet (3,0 meters)
- Threaded stainless steel inserts in carriage for load mounting
- Polyurethane belt with high strength steel tension members
- $0^{\circ} \mathrm{F}$ to $+176^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right.$ to $\left.+80^{\circ} \mathrm{C}\right)$ operating temperature
- Single screw belt tensioning with self locking thread
- Dynamic Load Capacity to 3,100 lbs (1406 kg)
- Recirculating linear ball bearing system
- Precision ground square rail design
- 2 rails, 2 or 4 bearing carriages

Options - 120 Series

- End of travel (EOT) and home switches wired
- CAD drawings available via the internet
- Adapter brackets for non-NEMA motors

ㅁ Chrome plated linear bearings \& rails

- Rotary incremental encoders
- NEMA 34 adapter bracket
- Power-off electric brakes
- Carriage adapter plates
\square Vertical angle bracket
- Motor couplings

(E) - English Interface
(M) - Metric Interface

Specifications

Other	For Two (2) \& Four (4) Bearing Carriages
Table Material Linear Rail Material Belt Properties	Base, Carriage, End Plates, \& Cover Plate - 6061 anodized aluminum Stainless Steel Black, 16 mm wide, Polyurethane, Steel reinforced belt
Drive Pulley Weight Drive Pulley Diameter Drive Lead	
Belt Stretch - x Load (lbs or N) Unidirectional Repeatability Bidirectional Repeatability Position Accuracy (Belt) ${ }^{(1)}$ Orthogonality (multi-axis systems)	0.00025 in/ft per lbs $($ 0,00476 $\mathrm{~mm} / \mathrm{m}$ per N$)$ $+/-$ 0.001 in $(+/-$ 0,0254 $\mathrm{~mm})$ $+/-$ 0.004 in $(+/-$ 0,1016 $\mathrm{~mm})$ $<$ 0.010 in/ft (< 0,254 $\mathrm{~mm} / 300 \mathrm{~mm})$ $<$
Friction Coefficient Breakaway Torque Motor Mount Coupling	$<60 \quad \text { oz-in } \quad(0,424 \mathrm{~N}-\mathrm{m})$ NEMA 23 \& 34 Mounts, Metric Mounts, and Gearheads Two (2) different styles available

Footnotes:

(1) Position accuracy varies based on belt stretch. The given rating is based upon a carriage speed of 5 inches $/ \mathrm{sec}$ ($127 \mathrm{~mm} / \mathrm{sec}$) and a no load condition.

Dimensions \& Specifications

- Without Cover Plates -

Model Number	Travel Length inches (mm)	Table Dimensions inches (mm)		Mounting Dimensions inches (mm)				Belt Weight ounces (gm)	Table ${ }^{(1)}$Weightlbs(kg)
		A	B	C	D	E	M		
12x4004-CP0	$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} 8.0 \\ (203,2) \end{gathered}$	$\begin{aligned} & 14.000 \\ & (355,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{gathered} 1.3 \\ (36,8) \end{gathered}$	$\begin{gathered} 8.4 \\ (3,8) \end{gathered}$
12x4006-CP0	$\begin{gathered} 6 \\ (150) \end{gathered}$	$\begin{gathered} 10.0 \\ (254,0) \end{gathered}$	$\begin{aligned} & 16.000 \\ & (406,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{gathered} 1.5 \\ (42,5) \end{gathered}$	$\begin{gathered} 9.1 \\ (4,1) \end{gathered}$
12x4008-CP0	$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{gathered} 12.0 \\ (304,8) \end{gathered}$	$\begin{aligned} & 18.000 \\ & (457,2) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$	3	12	$\begin{gathered} 1.7 \\ (48,2) \end{gathered}$	$\begin{gathered} 9.8 \\ (4,4) \end{gathered}$
12x4012-CP0	$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{gathered} 16.0 \\ (406,4) \end{gathered}$	$\begin{array}{r} 22.000 \\ (558,8) \end{array}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 1.500 \\ & (38,1) \end{aligned}$	5	16	$\begin{gathered} 2.1 \\ (59,5) \end{gathered}$	$\begin{aligned} & 11.1 \\ & (5,0) \end{aligned}$
12x4016-CP0	$\begin{gathered} 16 \\ (405) \end{gathered}$	$\begin{gathered} 20.0 \\ (508,0) \end{gathered}$	$\begin{array}{r} 26.000 \\ (660,4) \end{array}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	5	16	$\begin{gathered} 2.5 \\ (70,9) \end{gathered}$	$\begin{aligned} & 12.4 \\ & (5,6) \end{aligned}$
12x4020-CP0	$\begin{gathered} 20 \\ (505) \end{gathered}$	$\begin{gathered} 24.0 \\ (609,6) \end{gathered}$	$\begin{aligned} & 30.000 \\ & (762,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	7	20	$\begin{gathered} 2.9 \\ (82,2) \end{gathered}$	$\begin{aligned} & 13.7 \\ & (6,2) \end{aligned}$
12x4024-CP0	$\begin{gathered} 24 \\ (605) \end{gathered}$	$\begin{gathered} 28.0 \\ (711,2) \end{gathered}$	$\begin{aligned} & 34.000 \\ & (863,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	9	24	$\begin{gathered} 3.3 \\ (93,6) \end{gathered}$	$\begin{aligned} & 15.1 \\ & (6,8) \end{aligned}$
12x4030-CP0	$\begin{gathered} 30 \\ (760) \end{gathered}$	$\begin{gathered} 34.0 \\ (863,6) \end{gathered}$	$\begin{aligned} & 40.000 \\ & (1016,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	11	28	$\begin{gathered} 3.9 \\ (110,6) \end{gathered}$	$\begin{aligned} & 17.1 \\ & (7,8) \end{aligned}$
12x4036-CP0	$\begin{gathered} 36 \\ (910) \end{gathered}$	$\begin{gathered} 40.0 \\ (1016,0) \end{gathered}$	$\begin{gathered} 46.000 \\ (1168,4) \end{gathered}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	13	32	$\begin{gathered} 4.5 \\ (127,6) \end{gathered}$	$\begin{aligned} & 19.1 \\ & (8,7) \end{aligned}$
12x4042-CP0	$\begin{gathered} 42 \\ (1060) \end{gathered}$	$\begin{gathered} 46.0 \\ (1168,4) \end{gathered}$	$\begin{gathered} 52.000 \\ (1320,8) \end{gathered}$	$\begin{aligned} & 1.750 \\ & (44,4) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	15	36	$\begin{gathered} 5.1 \\ (144,6) \end{gathered}$	$\begin{aligned} & 21.1 \\ & (9,6) \end{aligned}$
12x4048-CP0	$\begin{gathered} 48 \\ (1215) \end{gathered}$	$\begin{gathered} 52.0 \\ (1320,8) \end{gathered}$	$\begin{aligned} & 58.000 \\ & (1473,2) \end{aligned}$	$\begin{aligned} & 2.250 \\ & (57,1) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	17	40	$\begin{gathered} 5.7 \\ (161,6) \end{gathered}$	$\begin{gathered} 23.1 \\ (10,4) \end{gathered}$
12x4054-CP0	$\begin{gathered} 54 \\ (1370) \end{gathered}$	$\begin{gathered} 58.0 \\ (1473,2) \end{gathered}$	$\begin{gathered} 64.000 \\ (1625,6) \end{gathered}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	21	48	$\begin{gathered} 6.3 \\ (178,6) \end{gathered}$	$\begin{gathered} 25.1 \\ (11,4) \end{gathered}$
12x4060-CP0	$\begin{gathered} 60 \\ (1520) \end{gathered}$	$\begin{gathered} 64.0 \\ (1625,6) \end{gathered}$	$\begin{gathered} 70.000 \\ (1778,0) \end{gathered}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	23	52	$\begin{gathered} 6.9 \\ (195,6) \end{gathered}$	$\begin{aligned} & 27.1 \\ & (12,3) \end{aligned}$
12x4072-CP0	$\begin{gathered} 72 \\ (1820) \end{gathered}$	$\begin{gathered} 76.0 \\ (1930,4) \end{gathered}$	$\begin{aligned} & 82.000 \\ & (2082,8) \end{aligned}$	$\begin{aligned} & 1.750 \\ & (44,4) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	27	60	$\begin{gathered} 8.1 \\ (229,6) \end{gathered}$	$\begin{gathered} 31.1 \\ (14,1) \end{gathered}$
12x4084-CP0	$\begin{gathered} 84 \\ (2130) \end{gathered}$	$\begin{gathered} 88.0 \\ (2235,2) \end{gathered}$	$\begin{gathered} 94.000 \\ (2387,6) \end{gathered}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	33	72	$\begin{gathered} 9.3 \\ (263,7) \end{gathered}$	$\begin{array}{r} 35.1 \\ (15,9) \end{array}$
12x4096-CP0	$\begin{gathered} 96 \\ (2435) \end{gathered}$	$\begin{gathered} 100.0 \\ (2540,0) \end{gathered}$	$\begin{gathered} 106.000 \\ (2692,4) \end{gathered}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	37	80	$\begin{gathered} 10.5 \\ (297,7) \end{gathered}$	$\begin{gathered} 39.1 \\ (17,7) \end{gathered}$
12x4108-CP0	$\begin{gathered} 108 \\ (2740) \end{gathered}$	$\begin{gathered} 112.0 \\ (2844,8) \end{gathered}$	$\begin{array}{r} 118.000 \\ (2997,2) \end{array}$	$\begin{aligned} & 2.250 \\ & (57,1) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	41	88	$\begin{gathered} 11.7 \\ (331,7) \end{gathered}$	$\begin{gathered} 43.1 \\ (19,6) \end{gathered}$
12x4120-CP0	$\begin{gathered} 120 \\ (3045) \end{gathered}$	$\begin{gathered} 124.0 \\ (3149,6) \end{gathered}$	$\begin{gathered} 130.000 \\ (3302,0) \end{gathered}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	47	100	$\begin{gathered} 12.9 \\ (365,7) \end{gathered}$	$\begin{gathered} 47.1 \\ (21,4) \end{gathered}$

- $x=2$; Carriage has 2 bearings; Carriage weight $=1.6 \mathrm{lbs} .(0,73 \mathrm{~kg})$

L $x=4$; Carriage has 4 bearings; Carriage weight $=1.8 \mathrm{lbs} .(0,82 \mathrm{~kg})$

Footnotes:

(1) Weight shown is with a 2 bearing carriage [1.6 lbs ($0,73 \mathrm{~kg}$)], a NEMA 23 motor mount [$0.34 \mathrm{lbs}(0,16 \mathrm{~kg})$], and a H100 style [$0.08 \mathrm{lbs}(0,04 \mathrm{~kg})]$ coupling . When using a 4 bearing carriage add $0.2 \mathrm{lbs}(0,09 \mathrm{~kg})$ to each value.

Dimensions

- Without Cover Plates -

Note: Any 100, 110, 120 or 130 series table can be mounted on top of any second 100, 110, 120 series table by the user, in order to create X-Y multiple axis configurations. The $100-$ CP1, 100-CP2, or 120 series tables require one of the Carriage Adapter Plate options. The carriage's threaded stainless steel insert hole pattern exactly matches the base mounting hole pattern on each table, therefore no extra adapter bracket or machining is required. However a precision square tool, or micrometer depth gauge, is required in order to obtain an orthogonality between the two tables of < 30 arc-seconds. The table base, carriage top \& carriage sides are all precision machined. LINTECH's 100 series, 4 bearing carriage, should be used for the bottom axis in a mutiple axes application for better system rigidity, performance, and life.

Dimensions \& Specifications

- With Top Cover Plate Only -

Model Number	Travel (1) Length inches (mm)	Table Dimensions inches (mm)		Mounting Dimensions inches (mm)				Belt Weight ounces (gm)	$\begin{aligned} & \text { Table }{ }^{(2)} \\ & \text { Weight } \\ & \text { lbs } \\ & (\mathrm{kg}) \end{aligned}$
		A	B	C	D	E	M		
12x4004-CP1	$\begin{gathered} 4 \\ (100) \end{gathered}$	$\begin{gathered} 8.0 \\ (203,2) \end{gathered}$	$\begin{aligned} & 14.000 \\ & (355,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{gathered} 1.3 \\ (36,8) \end{gathered}$	$\begin{gathered} 8.4 \\ (3,8) \end{gathered}$
12x4006-CP1	$\begin{gathered} 6 \\ (150) \end{gathered}$	$\begin{gathered} 10.0 \\ (254,0) \end{gathered}$	$\begin{aligned} & 16.000 \\ & (406,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	1	8	$\begin{gathered} 1.5 \\ (42,5) \end{gathered}$	$\begin{gathered} 9.1 \\ (4,1) \end{gathered}$
12x4008-CP1	$\begin{gathered} 8 \\ (200) \end{gathered}$	$\begin{gathered} 12.0 \\ (304,8) \end{gathered}$	$\begin{aligned} & 18.000 \\ & (457,2) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$	3	12	$\begin{gathered} 1.7 \\ (48,2) \end{gathered}$	$\begin{gathered} 9.8 \\ (4,4) \end{gathered}$
12x4012-CP1	$\begin{gathered} 12 \\ (300) \end{gathered}$	$\begin{gathered} 16.0 \\ (406,4) \end{gathered}$	$\begin{array}{r} 22.000 \\ (558,8) \end{array}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 1.500 \\ & (38,1) \end{aligned}$	5	16	$\begin{gathered} 2.1 \\ (59,5) \end{gathered}$	$\begin{aligned} & 11.1 \\ & (5,0) \end{aligned}$
12x4016-CP1	$\begin{gathered} 16 \\ (405) \end{gathered}$	$\begin{gathered} 20.0 \\ (508,0) \end{gathered}$	$\begin{array}{r} 26.000 \\ (660,4) \end{array}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	5	16	$\begin{gathered} 2.5 \\ (70,9) \end{gathered}$	$\begin{aligned} & 12.4 \\ & (5,6) \end{aligned}$
12x4020-CP1	$\begin{gathered} 20 \\ (505) \end{gathered}$	$\begin{gathered} 24.0 \\ (609,6) \end{gathered}$	$\begin{aligned} & 30.000 \\ & (762,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	7	20	$\begin{gathered} 2.9 \\ (82,2) \end{gathered}$	$\begin{aligned} & 13.7 \\ & (6,2) \end{aligned}$
12x4024-CP1	$\begin{gathered} 24 \\ (605) \end{gathered}$	$\begin{gathered} 28.0 \\ (711,2) \end{gathered}$	$\begin{aligned} & 34.000 \\ & (863,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	9	24	$\begin{gathered} 3.3 \\ (93,6) \end{gathered}$	$\begin{aligned} & 15.1 \\ & (6,8) \end{aligned}$
12x4030-CP1	$\begin{gathered} 30 \\ (760) \end{gathered}$	$\begin{gathered} 34.0 \\ (863,6) \end{gathered}$	$\begin{aligned} & 40.000 \\ & (1016,0) \end{aligned}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	11	28	$\begin{gathered} 3.9 \\ (110,6) \end{gathered}$	$\begin{aligned} & 17.1 \\ & (7,8) \end{aligned}$
12x4036-CP1	$\begin{gathered} 36 \\ (910) \end{gathered}$	$\begin{gathered} 40.0 \\ (1016,0) \end{gathered}$	$\begin{aligned} & 46.000 \\ & (1168,4) \end{aligned}$	$\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	13	32	$\begin{gathered} 4.5 \\ (127,6) \end{gathered}$	$\begin{aligned} & 19.1 \\ & (8,7) \end{aligned}$
12x4042-CP1	$\begin{gathered} 42 \\ (1060) \end{gathered}$	$\begin{gathered} 46.0 \\ (1168,4) \end{gathered}$	$\begin{aligned} & 52.000 \\ & (1320,8) \end{aligned}$	$\begin{aligned} & 1.750 \\ & (44,4) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	15	36	$\begin{gathered} 5.1 \\ (144,6) \end{gathered}$	$\begin{aligned} & 21.1 \\ & (9,6) \end{aligned}$
12x4048-CP1	$\begin{gathered} 48 \\ (1215) \end{gathered}$	$\begin{gathered} 52.0 \\ (1320,8) \end{gathered}$	$\begin{aligned} & 58.000 \\ & (1473,2) \end{aligned}$	$\begin{aligned} & 2.250 \\ & (57,1) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	17	40	$\begin{gathered} 5.7 \\ (161,6) \end{gathered}$	$\begin{gathered} 23.1 \\ (10,4) \end{gathered}$
12x4054-CP1	$\begin{gathered} 54 \\ (1370) \end{gathered}$	$\begin{gathered} 58.0 \\ (1473,2) \end{gathered}$	$\begin{aligned} & 64.000 \\ & (1625,6) \end{aligned}$	$\begin{gathered} 0.250 \\ (6,3) \end{gathered}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	21	48	$\begin{gathered} 6.3 \\ (178,6) \end{gathered}$	$\begin{aligned} & 25.1 \\ & (11,4) \end{aligned}$
12x4060-CP1	$\begin{gathered} 60 \\ (1520) \end{gathered}$	$\begin{gathered} 64.0 \\ (1625,6) \end{gathered}$	$\begin{gathered} 70.000 \\ (1778,0) \end{gathered}$	$\begin{aligned} & 0.750 \\ & (19,0) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	23	52	$\begin{gathered} 6.9 \\ (195,6) \end{gathered}$	$\begin{gathered} 27.1 \\ (12,3) \end{gathered}$
12x4072-CP1	$\begin{gathered} 72 \\ (1820) \end{gathered}$	$\begin{gathered} 76.0 \\ (1930,4) \end{gathered}$	$\begin{aligned} & 82.000 \\ & (2082,8) \end{aligned}$	$\begin{aligned} & 1.750 \\ & (44,4) \end{aligned}$	$\begin{aligned} & 2.500 \\ & (63,5) \end{aligned}$	27	60	$\begin{gathered} 8.1 \\ (229,6) \end{gathered}$	$\begin{gathered} 31.1 \\ (14,1) \end{gathered}$

T-x=2; Carriage has 2 bearings; Carriage weight $=1.6 \mathrm{lbs} .(0,73 \mathrm{~kg})$
$\square x=4 ; \quad$ Carriage has 4 bearings; Carriage weight $=1.8 \mathrm{lbs} .(0,82 \mathrm{~kg})$

Footnotes:

(1) For travels greater than 72 inches $(1820 \mathrm{~mm})$ a cover plate $(-C P 1)$ cannot be used due to the sag of the cover plate.
(2) Weight shown is with a 2 bearing carriage [1.6 lbs ($0,73 \mathrm{~kg}$)], a NEMA 23 motor mount [$0.34 \mathrm{lbs}(0,16 \mathrm{~kg})$], and a H 100 style [$0.08 \mathrm{lbs}(0,04 \mathrm{~kg})]$ coupling. When using a 4 bearing carriage add $0.2 \mathrm{lbs}(0,09 \mathrm{~kg})$ to each value.

Dimensions

- With Top Cover Plate Only -

Note: Any 100, 110, 120 or 130 series table can be mounted on top of any second 100, 110, 120 series table by the user, in order to create X-Y multiple axis configurations. The 100-CP1, 100-CP2, or 120 series tables require one of the Carriage Adapter Plate options. The carriage's threaded stainless steel insert hole pattern exactly matches the base mounting hole pattern on each table, therefore no extra adapter bracket or machining is required. However a precision square tool, or micrometer depth gauge, is required in order to obtain an orthogonality between the two tables of < 30 arc-seconds. The table base, carriage top \& carriage sides are all precision machined. LINTECH's 100 series, 4 bearing carriage, should be used for the bottom axis in a mutiple axes application for better system rigidity, performance, and life.

Maximum Motor Input Torque, Maximum Belt Force, \& Maximum Acceleration Rate

Maximum Motor Input Torque

The maximum safe speed/torque of a motor/drive system that can be used with the 120 series, is limited by the belt strength at a given speed. The maximum linear forces the belt can adequately handle are determined by the number of teeth on the pulley and the belt width. The chart below illustrates the relationship between motor input torque/belt force and carriage speed. Care should be taken when sizing and selecting a motor/drive system for use with a 120 series table. Exceeding the maximum input torque values at the listed speeds can cause belt "skipping" over pulley teeth. This will result in mis-positioning of the carriage.

Maximum Acceleration

The maximum acceleration rate using a 120 series table can be determined by the simple equation $\mathbf{F}=\mathbf{M} \mathbf{x} \mathbf{A}$. Knowing the mass of the load, and the maximum safe operating force for the belt, the maximum possible acceleration rate can be determined. Note: The mechanical limitation for acceleration of the 120 series table is 2 g's.

Maximum Acceleration Example

$\mathbf{F}=\mathbf{M} \times \mathbf{A}$
$\mathbf{F}=$ maximum belt force at desired speed
M = user applied load
$\mathrm{A}=$ maximum acceleration rate (g's)
$\operatorname{Sin} \phi=\quad$ angle of table from horizontal (degrees)

Horizontal Application

$$
A=\frac{F}{M}
$$

Vertical Application
$A=\frac{F-M \operatorname{Sin} \phi}{M}$

Example: A 40 lb load is mounted to a 120 series carriage in a horizontal application. Determine the maximum accel rate in g's \& in/sec ${ }^{2}$ that can be used to achieve a maximum speed of 75 IPS.

Step 1: From graph below, determine the maximum belt force at $75 \mathrm{IPS}:(\mathrm{F}=80 \mathrm{lbs})$.

Step 2: Add up your total mass = load weight + carriage weight: $(M=40+1.8=41.8 \mathrm{lbs})$.
Step 3: Solve for A : $(A=80 / 41.8=1.9 \mathrm{~g}$'s $)$.
Note: $1 \mathrm{~g}=386 \mathrm{in} / \mathrm{sec}^{2}$
Step 5: 1.9 g 's $\times 386=733 \mathrm{in} / \mathrm{sec}^{2}$.

1) Table friction \& breakaway forces have already been deducted from the above maximum belt force values.
2) Curve based upon maximum belt values. Select a motor coupling that can handle the required torque.

Master/Slave 120 Series Configuration

For some $X-Y$ belt drive applications, the master/slave configuration shown to the right may be required. This system provides two bottom (X) axes spread apart a set distance, yet driven by one motor. The spreading of the two bottom axes minimizes the deflection on the Y axis, reduces the moment loading on the X axes carriages, increases the system rigidity, and prevents twisting of the Y axis as it accelerates to a set speed. LINTECH can provide the shaft supports, the cross shaft, the couplings, and the 120 series belt drive table without a motor mount bracket. The shaft supports are required as the couplings DO NOT provide adequate support of the shaft by themselves. Also, the shaft supports prevent the cross shaft from "whipping" at long lengths and high speeds.

The chart below lists the maximum carriage speed available with a given distance between shaft supports. A minimum of two shaft supports is always required. More than two can be used to increase the speed of a longer spread system. The equations below show the relationship between the \# of shaft supports, the spread between the two bottom axes (B), and the distance between individual shaft supports (A).
$\mathbf{A}=$ distance between shaft supports
$\mathbf{B}=$ distance between 2 bottom axes
2 Shaft Supports: $\mathbf{A}=[\mathbf{B}-7.50$ in (190,5 mm)]
3 Shaft Supports: $\mathbf{A}=[\mathbf{B}-8.53 \mathrm{in}(216,7 \mathrm{~mm})] / 2$
4 Shaft Supports: $\mathbf{A}=[\mathbf{B}-9.56 \mathrm{in}(242,8 \mathrm{~mm})] / 3$

Maximum Distance Between Shaft Supports		Maximum Shaft Speed	Equivalent Carriage Speed	
(inches)	(mm)	(RPM)	(in/sec)	$(\mathrm{mm} / \mathrm{sec})$
$<=30$	762	2000	118	3000
$<=36$	914	1500	89	2250
$<=48$	1219	840	50	1260
$<=54$	1372	660	39	990
$<=60$	1524	535	32	802
$<=66$	1676	440	26	660
$<=72$	1829	370	22	555
$<=84$	2134	270	16	405
$<=96$	2438	208	12	312
$<=108$	2743	164	10	246
$<=120$	3048	133	8	200

Note: The user is required to supply the mounting surface for the above configurations. LINTECH normally only supplies all the positioning hardware. A common base plate can be provided by LINTECH upon request.

Example \#1: Above configuration with Y axis and 2 extended carriage adapter plates.

Example \#2: Above configuration with Y axis, 2 extended carriage adapter plates, and 2 horizontal angle brackets.

Table Deflection - Multiple Axis Configurations

The "moment of inertia" of an object is a gauge of the strength of that object to resist deflecting when used in an application or orientation where deflection might occur. The higher an I value relates to a lower amount of deflection. The following graphs can be used to estimate the deflection value for a given configuration. The information in the graphs was obtained with the bottom axis firmly mounted to a granite surface plate and also includes the deflection of the bottom axis carriage assembly \& all mounting hardware. Individual applications will vary depending on the user mounting surface, user mounting hardware, and user mounting configuration. If the deflection values below are too high for your application, a steel sub plate, or aluminum cross member, can be added for additional " Y " axis support. Contact LINTECH for more details.

Table Deflection - Multiple Axis Configurations
$\mathbf{I}=0.30 \mathrm{in}^{4}\left(1.25 \times 10^{5} \mathrm{~mm}^{4}\right)$

$\mathbf{I}=3.50 \mathrm{in}^{4}\left(1.46 \times 10^{6} \mathrm{~mm}^{4}\right)$

2 Bearing 100, 110 or 120 Series on Bottom Axis

4 Bearing 100, 110 or 120 Series on Bottom Axis

2 Bearing 100, 110 or 120 Series on Bottom Axis

4 Bearing 100, 110 or 120 Series on Bottom Axis

Linear Bearing Load Capacities

The following equation, and graphs, can be used to help determine the linear bearing life, and load capacity, of a 100, 110 or 120 series positioning table.

$$
L=\left[\frac{R}{F \times S}\right]^{3} \times B
$$

$\mathbf{L}=$ calculated travel life (millions of inches or Km)
$\mathbf{R}=$ rated dynamic load capacity of carriage (or each bearing) at 2 million inches of travel or 50 Km
F = user applied load
$\mathbf{S}=$ safety factor (1 to 8)
B $=$ either 2 (for millions of inches) or 50 (for Km)

Dynamic Moment Load (M_{R}) Capacity Load applied away from Carriage Center

travel life		2 Bearing		4 Bearing	
millions of inches	(Km)	$\mathrm{ft}-\mathrm{lbs}$	$(\mathrm{N}-\mathrm{m})$	$\mathrm{ft}-\mathrm{lbs}$	$(\mathrm{N}-\mathrm{m})$
2	(50)	140	(190)	280	(379)
50	(1270)	47	(64)	95	(129)
100	(2540)	37	(50)	75	(101)

Ratings are based on $\mathrm{d}_{3}=12$ inches $(305 \mathrm{~mm}) \& \mathrm{~d}_{4}=0$

Travel Life
millions of inches (Km)
Ratings are based on $d_{3}=12$ inches $(305 \mathrm{~mm}) \& d_{4}=0$

Dynamic Horizontal Load Capacity
Load Centered on Carriage

travel life		2 Bearing		4 Bearing	
millions of inches	(Km)	lbs	(kg)	lbs	(kg)
2	(50)	1,550	(703)	3,100	(1406)
50	(1270)	525	(238)	1,060	(480)
100	(2540)	415	(188)	840	(381)

travel life		2 Bearing		4 Bearing	
millions of inches	(Km)	ft -lbs	$(\mathrm{N}-\mathrm{m})$	$\mathrm{ft}-\mathrm{lbs}$	$(\mathrm{N}-\mathrm{m})$
2	(50)	18	(24)	240	(325)
50	(1270)	6	(8)	82	(111)
100	(2540)	5	(7)	65	(88)
Ratings are based on $\mathrm{d}_{3}=0 \& \mathrm{~d}_{4}=12$ inches $(305 \mathrm{~mm})$					

End of Travel (EOT) Switches \& Home Switch

LINTECH provides several options for EOT \& home switches. One style uses mechanically actuated switches, while other styles use "non-contact" versions. When ordered with a LINTECH 100, 110 or 120 series table, each switch is mounted to the side of the table, while the actuating cams are mounted to the carriage assembly. The T-slot which runs along both sides of the 100, 110 and 120 series, allows the switches to be located anywhere along the table. The switches are pre-wired by LINTECH for easy interfacing to the users Motion Controller.

End of Travel (EOT) Switches

End of travel (EOT) switches can be utilized by a motion controller to stop carriage motion, thereby preventing any damage to personnel, table carriage, or user mounted load if the extreme end of travel has been reached by the carriage. There are two EOT switches mounted to the side of the table, one on each end. The CCW switch is mounted at the motor mount end, while the CW switch is located at the opposite end of the table. LINTECH provides normally closed (NC) end of travel switches. This provides for a power-off fail safe system, where the position controller can detect broken wires. It is highly recommended that any positioning table used with a position controller, should have end of travel switches installed for protection of personnel, table carriage, and user mounted load.

Home Switch

The home switch can be utilized by a motion controller as a known fixed mechanical location on the positioning table. The switch is located on the opposite side of the EOT switches, at the motor mount end, and is a normally open (NO) switch.

Switch Locations

The following diagram shows the locations of the switches when ordered from LINTECH.

Note: For the 100 \& 120 series, EOT switches are normally located 0.125 inches (3 mm) inward from the maximum travel hard stops. Thus, reducing overall system travel by 0.25 inches (6 mm) from listed table travel for each model \#. For the 110 series there is NO reduction of listed travel length when using EOT switches.

Note: Each switch can be located anywhere along the T-slots, which run on both sides of the table.

Switch Type	Cost	Repeatability inches (microns)	Actuated	Power Supply Required	Activation Area inches $(m m)$	Comments
mechanical	least expensive	$+/-$0.0002 (5)	mechanical	No	1.75 $(44,45)$	for most applications
reed	slightly more	$+/-$0.0020 (50)	magnetic	No	0.30 $(7,62)$	for non-contact \& low repeatable
applications						

Note: The repeatability of any switch is dependent upon several factors: carriage speed, accel rate, load weight, switch style, and the position controller. LINTECH's ratings are based upon a carriage speed of 0.5 inches $/ \mathrm{sec}(12.7 \mathrm{~mm} / \mathrm{sec}$) and a no load condition.

End of Travel (EOT) Switches \& Home Switch

Mechanical Switches

Repeatability	$:+/-0.0002$ inch (5 microns)
Electrical	$: 5 \mathrm{amps} @ 125 \mathrm{VAC}$
	$1 \mathrm{amp} @ 85 \mathrm{VDC}$
Activation Style	$:$ mechanical cam
Activation Area	$: 1.75$ inches $(44,45 \mathrm{~mm})$ of travel
Temperature Range	$:-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Environment	$:$ non wash down
Added Table Width	$: 0.063$ inch $(1,6 \mathrm{~mm})$ (EOT switches)
(100 \& 120 series)	0.063 inch $(1,6 \mathrm{~mm})$ (with Home switch)
Individual Switch Wiring	$:$ none

Standard LINTECH Wiring (provided when switch option is ordered with any table)
: from table end plate, 10 foot (3 m) shielded cable, 6 conductor, 24 AWG, unterminated leads

Wire Color	Description	
Black Blue	CW EOT cW Common	\square
Red White	CCW EOT cCW Common	\square
Brown Green	HOME HOME Common	
Silver	Shield	

Note: Hermetically sealed mechanical switches can be ordered as an option. This may be desired for "wash down" applications. Contact LINTECH.

Non-Contact Reed Switches

Repeatability
Electrical

Activation Style
Activation Area
Temperature Range
Environment
Added Table Width

Individual Switch Wiring

Standard LINTECH Wiring (provided when switch option is ordered with any table)
: from table end plate, 10 foot (3 m) shielded cable, 6 conductor, 24 AWG, unterminated leads

Wire Color	Description
Black Blue	CW EOT (black) CW Common (black)
Red White	
Brown Green	
Silver	Shield

CW - Clockwise
CCW - Counter Clockwise
EOT - End of Travel
NC - Normally Closed
NO - Normally Open

End of Travel (EOT) Switches \& Home Switch

Non-Contact Hall Effect Switches

Repeatability	$:+/-0.0002$ inch (5 microns)
Electrical	$: 5-24 \mathrm{VDC}$
	15 mA - power input
	25 mA max - signal
Actuation Style	$:$ magnetic
Activation Area	$: 0.32$ inches $(8,13 \mathrm{~mm})$ of travel
Temperature Range	$:-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Environment	$:$ wash down
Added Table Width	$:$ none
Individual Switch Wiring	$: 12$ inch $(305 \mathrm{~mm})$ leads

Standard LINTECH Wiring (provided when switch option is ordered with any table)
from table end plate, 10 foot (3 m) shielded cable; 9 conductor, 24 AWG, unterminated leads

Wire Color	Description			
Brown	CW Power CW EOT CW Common	(brown)	switch	NC
Black		(black)		
Blue		(blue)		
Red	CCW Power	(brown)	switch	NC
White	CCW EOT	(black)		
Green	CCW Common	(blue)		
Orange	Home Power	(brown)	switch	NO
Yellow	Home	(black)		
Grey	Home Common	(blue)		
Silver	Shield			

Non-Contact Proximity Switches

Repeatability
Electrical

Actuation Style
Activation Area
Temperature Range
Environment
Added Table Width (100 \& 120 series)

Individual Switch Wiring
: +/- 0.0002 inch (5 microns)
: 10-28 VDC
15 mA - power input 100 mA max - signal : non-magnetic cam
: 1.75 inches $(44,45 \mathrm{~mm})$ of travel
: $-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
: IEC IP67 wash down
: 0.20 inch ($5,1 \mathrm{~mm}$) (EOT switches) 0.20 inch ($5,1 \mathrm{~mm}$) (Home switch)
: 6.5 foot (2 m) cable for NPN : 3.3 foot (1 m) cable for PNP

NPN wiring connection - both NC \& NO\qquad Power - (Brown)	
NPN Switch Sinking	
PNP wiring connection - both NC \& NO Power - (Brown)	
PNP Switch Sourcing	

Standard LINTECH Wiring (provided when switch option is ordered with any table)
from table end plate, 10 foot (3 m) shielded cable; 9 conductor, 24 AWG, unterminated leads

Wire Color	Description			
Brown	CW Power (brown)			
Black	CW EOT	(black)	switch	NC
Blue	CW Common	(blue)		
Red	CCW Power	(brown)		
White	CCW EOT	(black)	switch	NC
Green	CCW Common	(blue)		
Orange	Home Power	(brown)		
Yellow	Home	(black)	switch	NO
Grey	Home Common			
Silver	Shield			

Motor Couplings

LINTECH provides three different types of couplings that can be used to mount a motor to a positioning table. These couplings compensate for misalignment between the motor shaft \& screw (or belt) drive shaft extension. This provides for troublefree operation as long as certain precautions are taken. The connected motor output torque should never exceed the coupling maximum torque capacity. Larger capacity couplings may be required for applications having high accelerations, large back driving loads, high torque output motors, or servo motors.

Model Number			Table	Bor Motor	Diam Min (in)	eters mum (mm)	(in)	$\begin{aligned} & \text { <imum } \\ & (\mathrm{mm}) \end{aligned}$		Inertia $o z-\mathrm{in}^{2}$ ($\mathrm{g}-\mathrm{cm}^{2}$)	Wind-up arc-sec/oz-in (deg/N-m)	Max Torque $\begin{aligned} & \text { oz-in } \\ & \text { (N-m) } \end{aligned}$
C100-312-aaa	$\begin{aligned} & 1.00 \\ & (25,4) \end{aligned}$	$\begin{aligned} & 1.50 \\ & (38,1) \end{aligned}$	312	aaa	. 250	6	. 375	10	$\begin{aligned} & 1.5 \\ & (43) \end{aligned}$	$\begin{array}{r} .19 \\ (35) \end{array}$	$\begin{aligned} & 23.0 \\ & (0,9) \end{aligned}$	$\begin{aligned} & 400 \\ & (2,8) \end{aligned}$
C125-312-aaa ${ }^{(1)}$	$\begin{aligned} & 1.25 \\ & (31,8) \end{aligned}$	$\begin{gathered} 2.00 \\ (50,8) \end{gathered}$	312	aaa	. 250	6	. 500	14	$\begin{aligned} & 3.5 \\ & (99) \end{aligned}$	$\begin{gathered} .68 \\ (124) \end{gathered}$	$\begin{gathered} 15.0 \\ (0,59) \end{gathered}$	$\begin{aligned} & 700 \\ & (4,9) \end{aligned}$
H100-312-aaa	$\begin{aligned} & 1.00 \\ & (25,4) \end{aligned}$	$\begin{aligned} & 1.28 \\ & (32,5) \end{aligned}$	312	aaa	. 250	6	. 375	10	$\begin{aligned} & 1.2 \\ & \text { (34) } \end{aligned}$	$\begin{aligned} & .15 \\ & (27) \end{aligned}$	$\begin{gathered} 7.2 \\ (0,28) \end{gathered}$	$\begin{aligned} & 450 \\ & (2,8) \end{aligned}$
H100-375-aaa	$\begin{gathered} 1.00 \\ (25,4) \end{gathered}$	$\begin{aligned} & 1.28 \\ & (32,5) \end{aligned}$	375	aaa	. 250	6	. 375	10	$\begin{aligned} & 1.2 \\ & (34) \end{aligned}$	$\begin{aligned} & .15 \\ & (27) \end{aligned}$	$\begin{gathered} 7.2 \\ (0,28) \end{gathered}$	$\begin{aligned} & 450 \\ & (2,8) \end{aligned}$
$\text { H131-312-aaa }{ }^{(1)}$	$\begin{aligned} & 1.31 \\ & (33,3) \end{aligned}$	$\begin{gathered} 1.89 \\ (48,0) \end{gathered}$	312	aaa	. 250	6	. 625	16	$\begin{aligned} & 2.9 \\ & (82) \end{aligned}$	$\begin{gathered} .62 \\ (114) \end{gathered}$	$\begin{gathered} 2.5 \\ (0,098) \end{gathered}$	$\begin{gathered} 1,000 \\ (7,1) \end{gathered}$
H131-375-aaa	$\begin{aligned} & 1.31 \\ & (33,3) \end{aligned}$	$\begin{aligned} & 1.89 \\ & (48,0) \end{aligned}$	375	aaa	. 250	6	. 625	16	$\begin{aligned} & 2.9 \\ & (82) \end{aligned}$	$\begin{gathered} .62 \\ (114) \end{gathered}$	$\begin{gathered} 2.5 \\ (0,098) \end{gathered}$	$\begin{gathered} 1,000 \\ (7,1) \end{gathered}$
$\text { H163-375-aaa }{ }^{(2)}$	$\begin{gathered} 1.63 \\ (41,4) \end{gathered}$	$\begin{aligned} & 2.00 \\ & (50,8) \end{aligned}$	375	aaa	. 375	10	. 750	20	$\begin{gathered} 5.4 \\ (153) \end{gathered}$	$\begin{aligned} & 1.79 \\ & (328) \end{aligned}$	$\begin{gathered} 1.2 \\ (0,047) \end{gathered}$	$\begin{aligned} & 2,000 \\ & (14,1) \end{aligned}$
G100-312-aaa	$\begin{aligned} & 0.99 \\ & (25,2) \end{aligned}$	$\begin{aligned} & 1.26 \\ & (32,0) \end{aligned}$	312	aaa	. 250	6	. 500	12	$\begin{aligned} & 1.3 \\ & (36) \end{aligned}$	$\begin{aligned} & .16 \\ & (29) \end{aligned}$	$\begin{gathered} 1.0 \\ (0,39) \end{gathered}$	$\begin{aligned} & 500 \\ & (3,5) \end{aligned}$
G100-375-aaa	$\begin{aligned} & 0.99 \\ & (25,2) \end{aligned}$	$\begin{aligned} & 1.26 \\ & (32,0) \end{aligned}$	375	aaa	. 250	6	. 500	12	$\begin{aligned} & 1.3 \\ & (36) \end{aligned}$	$\begin{aligned} & .16 \\ & (29) \end{aligned}$	$\begin{gathered} 1.0 \\ (0,39) \end{gathered}$	$\begin{aligned} & 500 \\ & (3,5) \end{aligned}$
G126-312-aaa	$\begin{aligned} & 1.26 \\ & (32,1) \end{aligned}$	$\begin{aligned} & 1.62 \\ & (41,0) \end{aligned}$	312	aaa	. 250	6	. 625	16	$\begin{aligned} & 2.7 \\ & (74) \end{aligned}$	$\begin{gathered} .54 \\ (99) \end{gathered}$	$\begin{gathered} 0.3 \\ (0,012) \end{gathered}$	$\begin{gathered} 1,100 \\ (7,7) \end{gathered}$
G126-375-aaa	$\begin{aligned} & 1.26 \\ & (32,1) \end{aligned}$	$\begin{aligned} & 1.62 \\ & (41,0) \end{aligned}$	375	aaa	. 250	6	. 625	16	$\begin{aligned} & 2.7 \\ & (74) \end{aligned}$	$\begin{aligned} & .54 \\ & \text { (99) } \end{aligned}$	$\begin{gathered} 0.3 \\ (0,012) \end{gathered}$	$\begin{gathered} 1,100 \\ (7,7) \end{gathered}$
$\text { G158-375-aaa }{ }^{(2)}$	$\begin{gathered} 1.58 \\ (40,2) \end{gathered}$	$\begin{gathered} 1.85 \\ (47,0) \end{gathered}$	375	aaa	. 375	10	. 750	20	$\begin{gathered} 4.3 \\ (120) \end{gathered}$	$\begin{aligned} & 1.34 \\ & (245) \end{aligned}$	$\begin{gathered} 0.2 \\ (0,008) \end{gathered}$	$\begin{aligned} & 2,400 \\ & (17,0) \end{aligned}$
Possible values for aaa	$\begin{aligned} & 250=.250 \text { inch } \\ & 375=.375 \text { inch } \\ & 500=.500 \text { inch } \\ & 625=.625 \text { inch } \end{aligned}$		$750=.750$ inch			$\begin{aligned} & 005=5 \mathrm{~mm} \\ & 006=6 \mathrm{~mm} \\ & 008=8 \mathrm{~mm} \\ & 010=10 \mathrm{~mm} \end{aligned}$			$\begin{aligned} & 012=12 \mathrm{~mm} \\ & 014=14 \mathrm{~mm} \\ & 016=16 \mathrm{~mm} \\ & 018=18 \mathrm{~mm} \end{aligned}$		$\begin{aligned} & 019=19 \mathrm{~mm} \\ & 020=20 \mathrm{~mm} \end{aligned}$	

Footnotes:

(1) This coupling option can not be used with the optional NEMA 23 motor mount for the $100 \& 110$ series because its length is too long. However, this coupling option can be used with the optional NEMA 34 motor mount. Custom motor mounts can be provided upon request. See page C-41 for more details.
(2) This coupling option can not be used with the optional NEMA 23 motor mount for the 120 series because its diameter is too big. However, this coupling option can be used with the optional NEMA 34 motor mount. Custom motor mounts can be provided upon request. See page C-41 for more details.

Motor Couplings

Coupling	Cost	Torque Capacity	Wind-up	Suggested Motor	Comments
C Type	least expensive	light	the most	stepper	ideal for most step motor applications
H Type	medium priced	medium	medium	stepper or servo	use for high accels \& for starting \& stopping large inertia loads
G Type	most expensive	high	the least	servo	use for very high torque requirements \& very high servo accelerations

Specification	100 \& 110 Series NEMA 23 bracket inches (mm)	100 \& 110 Series NEMA 34 bracket inches (mm)	120 Series NEMA 23 bracket inches (mm)	120 Series NEMA 34 bracket inches (mm)
Shaft extension diameter at motor mount end	$\begin{aligned} & 0.312 \\ & (7,92) \end{aligned}$	$\begin{aligned} & 0.312 \\ & (7,92) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9,53) \end{aligned}$	$\begin{aligned} & 0.375 \\ & (9,53) \end{aligned}$
Maximum coupling diameter	$\begin{aligned} & 1.500 \\ & (38,10) \end{aligned}$	$\begin{aligned} & 1.500 \\ & (38,10) \end{aligned}$	$\begin{aligned} & 1.500 \\ & (38,10) \end{aligned}$	$\begin{aligned} & 2.000 \\ & (50,80) \end{aligned}$
Maximum coupling length	$\begin{aligned} & 1.750 \\ & (44,45) \end{aligned}$	$\begin{aligned} & 2.250 \\ & (57,15) \end{aligned}$	$\begin{aligned} & 1.900 \\ & (48,26) \end{aligned}$	$\begin{aligned} & 2.375 \\ & (60,32) \end{aligned}$
Note: Custom brackets available upon request.				

Coupling Part Numbers

C020	C100-312-250	C125	H100-312-250	C155	H131-375-250	C400	G100-312-250	C435	G126-375-250
C021	C100-312-375	C126	H100-312-375	C156	H131-375-375	C401	G100-312-375	C436	G126-375-375
C022	C100-312-006	C127	H100-312-006	C157	H131-375-500	C402	G100-312-500	C437	G126-375-500
C023	C100-312-008	C128	H100-312-008	C158	H131-375-625	C403	G100-312-006	C438	G126-375-625
C024	C100-312-010	C129	H100-312-010	C159	H131-375-006	C404	G100-312-008	C439	G126-375-006
				C160	H131-375-008	C405	G100-312-010	C440	G126-375-008
C040	C125-312-250	C130	H100-375-250	C161	H131-375-010	C406	G100-312-012	C441	G126-375-010
C041	C125-312-375	C131	H100-375-375	C162	H131-375-012			C442	G126-375-012
C042	C125-312-500	C132	H100-375-006	C163	H131-375-014	C407	G100-375-250	C443	G126-375-014
C043	C125-312-006	C133	H100-375-008	C164	H131-375-016	C408	G100-375-375	C444	G126-375-016
C044	C125-312-008	C134	H100-375-010			C409	G100-375-500		
C045	C125-312-010			C190	H163-375-375	C410	G100-375-006	C470	G158-375-375
C046	C125-312-012	C145	H131-312-250	C191	H163-375-500	C411	G100-375-008	C471	G158-375-500
C047	C125-312-014	C146	H131-312-375	C192	H163-375-625	C412	G100-375-010	C472	G158-375-625
		C147	H131-312-500	C193	H163-375-750	C413	G100-375-012	C473	G158-375-750
		C148	H131-312-625	C194	H163-375-010			C474	G158-375-010
		C149	H131-312-006	C195	H163-375-012	C425	G126-312-250	C475	G158-375-012
		C150	H131-312-008	C196	H163-375-014	C426	G126-312-375	C476	G158-375-014
		C151	H131-312-010	C197	H163-375-016	C427	G126-312-500	C477	G158-375-016
		C152	H131-312-012	C198	H163-375-018	C428	G126-312-625	C478	G158-375-018
		C153	H131-312-014	C199	H163-375-019	C429	G126-312-006	C479	G158-375-019
		C154	H131-312-016	C200	H163-375-020	C430	G126-312-008	C480	G158-375-020
						C431	G126-312-010		
						C432	G126-312-012		
						C433	G126-312-014		
						C434	G126-312-016		

Horizontal \& Vertical Angle Brackets

LINTECH has provided a simple solution for those applications requiring multiple axis positioning. Two different angle brackets (a horizontal mount and a vertical mount) provide for $\mathrm{X}-\mathrm{Y}, \mathrm{X}-\mathrm{Z}$, and $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ configurations. These angle brackets are used to mount single axis tables together in order to form multiple axis configurations, or to orient the single axis table in a different plane of motion.

These precision machined aluminum angle brackets ensure that the orthogonality of the two tables is maintained to <30 arc-seconds. To achieve this orthogonality, one side of the angle bracket must be mounted to the table carriage with a precision square tool or micrometer depth gauge, while the

second axis is mounted securely against the reference edge of the angle bracket. The angle bracket hole pattern is preengineered for easy mounting of either the table carriage or table base.

When ordered, the angle bracket is shipped separately from the tables. The user is required to assemble the angle bracket to the tables. However, if requested to, LINTECH can pre-assemble the multiple axis system before shipping. Anytime an angle bracket is used for multiple axis configurations, moment loads will result on one or more axes. Be sure to review moment loads, and the positioning table life, for your application.

Horizontal Angle Bracket

Vertical Angle Bracket

Carriage Adapter Plates

Optional carriage adapter plates assist in the creation of simple $X-Y, X-Z$, and $X-Y-Z$ multiple axis systems. The regular carriage adapter plate can be used by either the $100-\mathrm{CP} 1,100-\mathrm{CP} 2$, or 120 series tables, while the extended adapter plate can be used with the 100,110 , or 120 series tables. The extended carriage adapter plate can be used in applications to increase the Y axis travel without having to use a longer travel table. A precision square tool, or micrometer depth gauge, is required in order to obtain an orthogonality between the two tables of <30 arc-seconds.

Notes:

(1) Above \mathbf{Y} travel distance (need to refer to Base Mounting Dimensions on pages C-6, C-8, C-10, C-14 \& C-28):

For \mathbf{D} dimension $=2.50$ inches $(63,5 \mathrm{~mm}): \mathbf{Y}=[$ table travel length $]-[\mathbf{C}$ dimension $]+[0.50$ inches $(12,7 \mathrm{~mm})]$
For \mathbf{D} dimension <2.50 inches ($63,5 \mathrm{~mm}$): $\mathbf{Y}=[$ table travel length] - [\mathbf{C} dimension] - [\mathbf{D} dimension] + [0.50 inches (12,7 mm)]

* Subtract an additional 0.875 inches $(22,22 \mathrm{~mm})$ from the above values if a 110 series table is used as the bottom axis.
* If a 110 series table is used as the top axis, the \mathbf{Y} travel distance is the same as the 110 series table travel due to the waycovers.
* The extended carriage adapter plate works with all top axis tables that use the optional NEMA 23 motor mount. Care should be taken if the optional NEMA 34 motor mount, or any other motor mount is used on the top axis table. The motor mount could extend below the table base, thus interfering with the extended carriage adapter plate.

Multiple Axis Configurations

With LINTECH 's uniquely designed angle brackets \& carriage adapter plates, along with the symmetrical base mounting hole pattern \& carriage insert pattern of the 100 and 120 series positioning tables, numerous $\mathrm{X}-\mathrm{Y}, \mathrm{X}-\mathrm{Z}$, and $\mathrm{X}-\mathrm{Y}-\mathrm{Z}$ configurations are possible. The 100-CP1, 100-CP2, and 120 series tables require the use of a "Carriage Adapter Plate". The increased width of the 110 (waycover) series prohibits the use of the horizontal and vertical angle brackets with these positioning tables.

NEMA 34 Motor Mount for 100 \& 110 Series

The NEMA 34 motor adapter bracket is an aluminum flange that mounts to the front of the NEMA 23 motor mount. The bracket can be ordered in either an English, or Metric motor mount. LINTECH can provide adapter brackets for any step motor, or servo motor, that has other mounting requirements.

Hand Crank for 100 \& 110 Series

For manually operated applications, LINTECH provides a hand crank option for the 100 \& 110 table series. The hand crank replaces the motor mount and coupling on the table.

NEMA 34 Motor Mount for 120 Series

The 120 series positioning table can be provided with an optional NEMA 34 motor adapter bracket. The bracket can be ordered in either an English, or Metric motor mount. LINTECH can provide adapter brackets for any step motor, or servo motor, that has other mounting requirements.

Chrome Plated Linear Bearings, Rails, and Screws

For applications in high moisture, high humidity, clean room, or highly corrossive environments, chrome plating of the linear bearings, linear rails, and screw will offer superior resistance to corrosion than stainless steel components, resulting in longer table life. The process uniformly deposits dense, hard, high chromium alloy on the rails or screw, and has a Rockwell C hardness value of 67-72. This process also conforms to MIL Spec: (MIL-C-23422). The chrome plating bonds to the parent material and will not crack or peel off under the high point loading of balls on the rail, or screw. This chrome plating process differs from a normal hard chrome plate which just lays on the surface of the part plated.

Motor Wrap Packages for 100 \& 110 Series

For space limited 100 \& 110 series applications, a belt and pulley system can couple the screw shaft extension to the motor shaft. This wraps the motor parallel to the table in order to decrease the overall positioning system length. Pulley weights and diameters are given in order to assist in calculating motor torque requirements.

NEMA 23 Right Hand Motor Wrap 100 Series (M06)
$0.7 \mathrm{lbs}(0,32 \mathrm{~kg})$ added to table weight
Motor Pulley Bore: 0.250 inch ($6,35 \mathrm{~mm}$)

NEMA 34 Right Hand Motor Wrap 100 Series (M08)
$1.1 \mathrm{lbs}(0,50 \mathrm{~kg})$ added to table weight Motor Pulley Bore: 0.375 inch ($9,52 \mathrm{~mm}$)

NEMA 23 Right Hand Motor Wrap 110 Series (M06)
$0.9 \mathrm{lbs}(0,41 \mathrm{~kg})$ added to table weight
Motor Pulley Bore: 0.250 inch ($6,35 \mathrm{~mm}$)

NEMA 34 Right Hand Motor Wrap 110 Series (M08)
$1.1 \mathrm{lbs}(0,50 \mathrm{~kg})$ added to table weight

Motor Wrap Frame Size	Motor Pulley Dia. inches (mm)	Motor Pulley Wt. ounces (kg)	Screw Pulley Dia. inches (mm)	Screw Pulley Wt. ounces (kg)	Belt Weight ounces (kg)
NEMA 23	1.65 $(41,9)$	7.5 $(0,21)$	1.65 $(41,9)$	$(0,21)$	$(0,028)$
NEMA 34	1.65 $(41,9)$	8.0 $(0,23)$	1.65	8.0	$(41,9)$

Note: Right hand motor wraps shown. The left hand wrap packages orient the motor to the opposite side of the table. Motor pulley \& belt shipped "loose". No motor mount nuts \& bolts are provided. Custom motor wrap packages are available upon request. Other motor pulley bores MUST be specified for non-NEMA motors.

Power-off Electric Brakes

For vertical table applications, or for those applications requiring the load to be locked securely in place, an electric brake may be mounted to the positioning table. The 100 or 110 series will have the brake mounted to the screw shaft extension located on the table end, opposite the motor mount bracket. The 120 series will have the brake mounted to the thru drive shaft option. With proper wiring from a control system, this power-off friction brake can ensure that the carriage is firmly held in place, when no electric power is applied to the brake. When power is applied to the brake, the brake is opened or "released".

For proper emergency braking of the positioning table, this electric brake needs to be interfaced to a position controller or relay network. LINTECH also provides 24 \& 90 VDC power supplies which can be used to power the brakes.

Brakes

Model Number	Holding Force in-lbs $(\mathrm{N}-\mathrm{m})$	Excitation Voltage volts	Current amps	Weight lbs (kg)
B01	18 $(2,0)$	24 VDC	0.733	1.4 $(0,62)$
B02	18 $(2,0)$	90 VDC	0.178	1.4 $(0,62)$

Note: This power-off electric brake MUST NOT be engaged when the positioning table is in motion. Moving the table with the brake applied could damage the brake and the positioning table. Also, continuous use of this brake to stop a table (load) that is in motion could damage the brake and the positioning table. Dynamic braking of a positioning table should be done by the motor and not the brake.

Power Supplies

Model Number	DC Output			AC Input		
volts	amps	style	volts	amps	Hz	
41970	5	3.0	regulated	$120 / 240$	$0.8 / 0.4$	$47-63$
37488	24	1.2	regulated	$120 / 240$	$0.8 / 0.4$	$47-63$
37489	90	0.8	unregulated	120	1.0	$50 / 60$
37490	90	0.8	unregulated	240	0.5	$50 / 60$

Linear \& Rotary Incremental Encoders

Fully enclosed, incremental, optical linear encoders can be mounted along side any LINTECH 100 or 110 series table. Shaftless, incremental, optical rotary encoders can be mounted to the screw shaft extension opposite the motor mount end on the 100,110 or 120 series positioning tables. These encoders provide positional feedback to either a motion controller, or a digital position display.

LINEAR		ROTARY	Description
Din Pin \#	Wire Color	Wire Color	
C	Green	White	Channel A^{+}(or A)
D	Yellow	Blue	Channel A- (or $\bar{A})$
E	Pink	Green	Channel B^{+}(or B)
L	Red	Orange	Channel B- (or B)
G	Brown	White/Black	Channel Z^{+}(or Z)
H	Grey	Red/Black	Channel Z ((Z Z)
A	Shield		Case ground
B	White	Black	Common
K	Black	Red	+ 5 vdc (+/- 5%)

Note: The encoder read head is mounted to the table carriage with the encoder lip seal facing down.

Specification	ROTARY ENCODERS			LINEAR ENCODERS	
	E01	E02	E03	E10	E11
Line Count Pre Quadrature Resolution Post Quadrature Resolution Accuracy	500 lines/rev 0.002 revs/pulse 0.0005 revs/pulse	1000 lines/rev 0.001 revs/pulse 0,00025 revs/pulse	1270 lines/rev 0.00079 revs/pulse 0.00019 revs/pulse	2500 lines/inch 0.0004 inch/pulse 0.0001 inch/pulse +/- 0.0002 in/40"	125 lines/mm 8 microns/pulse 2 micron/pulse +/- 5 microns $/ \mathrm{m}$
Maximum Speed Maximum Accel Excitation Power	50 revs/sec 40 revs $/ \mathrm{sec}^{2}$ $\text { + } 5 \text { VDC @ } 125 \text { ma }$			79 inches $/ \mathrm{sec}$ $2 \mathrm{~m} / \mathrm{sec}$ $130 \mathrm{ft} / \mathrm{sec}^{2}$ $40 \mathrm{~m} / \mathrm{sec}^{2}$ +5 VDC @ 150 ma	
Operating Temperature Humidity Shock Weight	$32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ 20% to 80% non condensing 10 G's for 11 msec duration $0.7 \mathrm{lbs}(0,283 \mathrm{~kg})$			$32^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $50^{\circ} \mathrm{C}$) 20% to 80% non condensing 15 G's for 8 msec duration $0.7 \mathrm{oz} / \mathrm{inch}(0,00078 \mathrm{~kg} / \mathrm{mm})$ length of scale $+0.5 \mathrm{lbs}(0,23 \mathrm{~kg})$ read head and brackets	
Cable Length Zero Reference Output	$10 \mathrm{ft}(3 \mathrm{~m})$, unterminated 26 gauge leads Once per revolution			$10 \mathrm{ft}(3 \mathrm{~m})$ with DIN connector At center of encoder length	
Outputs	TTL square wave; Two channel ($\mathrm{A}+$ \& $\mathrm{B}+$); Differential (A - \& B-); Line Driver				

Notes

