## 200 Series Positioning Tables


Introduction ..... H-2
Ordering Guide ..... H-4
Specifications ..... H-5
Dimensions ..... H-6
Linear Bearing Load Capacity ..... H-10
Screw Travel Life ..... H-11
Thrust Capacity (axial load) ..... H-12
Table Deflection ..... H-13
Multiple Axis Configurations ..... H-14
EOT \& Home Switches ..... H-15
Screw Options ..... H-18
Motor Couplings ..... H-22
Motor Mount Options ..... H-24
Power-off Electric Brakes ..... H-26
Linear \& Rotary Encoders ..... H-27

## Single or Multiple Axis

LINTECH's 200 series positioning tables offer precision performance and design flexibility for use in a wide variety of Motion Control applications.

\author{

- Welding <br> - Test Stands <br> - Part Insertion <br> - Laser Positioning <br> - Liquid Dispensing <br> - Gluing <br> - Pick \& Place <br> - Part Scanning <br> - Inspection Stations <br> - General Automation <br> Semiconductor Processing
}


## Quality Construction

LINTECH's 200 series tables are designed with a low friction, preloaded, recirculating linear ball bearing system, which rides on a precision ground linear rails. The linear rails are mounted to a precision machined aluminum base, which offers a rigid support over the entire travel of the table's carriage. The load is mounted to a precision machined aluminum carriage, which has threaded stainless steel inserts for high strength and wear life. There are 22 different acme \& ball screw options, that offer high efficiencies and long life at an economical price. These tables are designed to allow for numerous options. They include EOT \& Home switches, linear \& rotary encoders, power-off electric brakes, motor wrap packages and versatile mounting brackets for multiple axis applications.


## Available Options

## Acme Screws \& Ball Screws

An assortment of acme screws and ball screws can be installed in the 200 series tables, providing solutions to load back driving, high duty cycle, high speed, extreme smoothness, and sensitive positioning applications.

## Vertical Angle Brackets

Optional vertical angle brackets can be mounted directly to the top of various LINTECH positioning tables, thus providing for easy multiple axis configurations.

## Waycovers

For operator protection, these tables can be fitted with a protective bellows. The entire length of the lead screw and linear bearing system will be covered.

## End of Travel and Home Switches

The 200 series tables can be provided with end of travel (EOT) and home switches mounted and wired for each axis. Most position controllers can utilize the EOT switches to stop carriage motion when the extreme table travel has been reached in either direction. The home switch provides a known mechanical location on the table.

## Linear and Rotary Encoders

Incremental encoders can be mounted to the table in order to provide positional data back to either a motion controller, or a digital display.

## Motor Adapter Brackets

NEMA 23, NEMA 34, or any metric mount motor can be mounted to a 200 series positioning table with the use of adapter brackets.

## Turcite Nut With Rolled Ball Screw

This solid polymer nut has no rolling elements in it, and performs very similar to an acme nut. It can provide smoother motion \& less audible noise than most ball nuts, and is ideal for corrosive \& vertical applications.

## Other

The 200 series tables can accommodate chrome plated linear bearings, rails, \& screws for corrosive environment applications, power-off electric brakes for load locking applications, motor wrap packages for space limfift d \& Spprificatiblts, and a hand crank for manually operated ap tions.

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

## Standard Features - 200 Series

- Compact 8.500 inches ( 216 mm ) wide by 3.750 inches ( 95 mm ) tall
- Travel lengths from 6 inches ( 150 mm ) to 55 inches ( 1395 mm )
- Threaded stainless steel inserts in carriage for load mounting
- $0^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}\left(-18^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$ ) operating temperature
- 2 rail, $2 \& 4$ bearing, $6 \& 12$ inch long carriages
- Recirculating linear ball bearing system
- Precision ground square rail design



## Options - 200 Series

- Chrome plated linear bearings, rails and screws
- End of travel (EOT) and home switches wired
- CAD drawings available via the internet
- Adapter brackets for non-NEMA motors
- Linear and rotary incremental encoders
- NEMA 23 \& 34 motor wrap packages
- NEMA 34 adapter bracket
- Power-off electric brakes
- Vertical angle bracket
- Turcite nut option
- Motor couplings
- Hand crank
- Ball screws:

Rolled - Non-preloaded \& Preloaded Nuts:
0.750 inch diameter, 0.200 inch lead
0.750 inch diameter, 0.500 inch lead

Precision - Non-preloaded \& Preloaded Nuts:
0.750 inch diameter, 0.200 inch lead 20 mm diameter, 5 mm lead 20 mm diameter, 20 mm lead

Ground - Preloaded Nuts Only:
0.750 inch diameter, 0.200 inch lead 20 mm diameter, 5 mm lead 20 mm diameter, 20 mm lead

ㅁ Acme screws:
Rolled - Non-preloaded \& Preloaded Nuts:
0.750 inch diameter, 0.100 inch lead
0.750 inch diameter, 0.200 inch lead
Encoder Options (see page H -27)

| E00 - none | E02 - rotary $(1000$ lines $/ \mathrm{rev})$ | E10 - linear $(2500$ lines $/ \mathrm{inch})$ | E99 - other |
| :--- | :--- | :--- | :--- |
| E01 - rotary $(500$ lines $/ \mathrm{rev})$ | E03 - rotary $(1270$ lines $/ \mathrm{rev})$ | E11 - linear $(125$ lines $/ \mathrm{mm})$ |  |

Power-off Brakes (see page H-26)
B00 - none B03-24 VDC B04-90 VDC B99 - other

| (E) | English Interface | (NPL) - Non Preloaded |
| :---: | :---: | :---: |
| (LH) | Left Hand | (PL) - Preloaded |
| (M) | Metric Interface | (RH) - Safiglit Standiced By: |

## Specifications

| Load Capacities | 6 inch (2 bearing) Carriage |  | 12 inch (4 bearing) Carriage |  |
| :---: | :---: | :---: | :---: | :---: |
| Dynamic Horizontal 2 million inches ( 50 km ) of travel | 4,400 lbs | ( 1996 kg ) | 8,800 lbs | $(3992 \mathrm{~kg}$ ) |
| Dynamic Horizontal $\quad 50$ million inches (1270 km) of travel | 1,500 lbs | ( 680 kg ) | 3,000 lbs | $(1360 \mathrm{~kg})$ |
| Static Horizontal | 7,600 lbs | ( 3447 kg ) | 15,200 lbs | $(6895$ kg) |
| Dynamic Roll Moment 2 million inches ( 50 km ) of travel | 790 ft -lbs | ( $1071 \mathrm{~N}-\mathrm{m}$ ) | 1,580 ft-lbs | ( $2142 \mathrm{~N}-\mathrm{m}$ ) |
| Dynamic Roll Moment $\quad 50$ million inches ( $1270 \mathrm{~km} \mathrm{)} \mathrm{of} \mathrm{travel}$ | 270 ft-lbs | ( $366 \mathrm{~N}-\mathrm{m}$ ) | $540 \mathrm{ft}-\mathrm{lbs}$ | ( $732 \mathrm{~N}-\mathrm{m}$ ) |
| Static Roll Moment | 1,365 ft-lbs | ( $1851 \mathrm{~N}-\mathrm{m}$ ) | 2,730 ft-lbs | ( $3701 \mathrm{~N}-\mathrm{m}$ ) |
| Dyn. Pitch \& Yaw Moment 2 million inches ( 50 km ) of travel | 175 ft -lbs | ( $237 \mathrm{~N}-\mathrm{m}$ ) | 2,485 ft-lbs | ( 3369 N-m) |
| Dyn. Pitch \& Yaw Moment 50 million inches ( $1270 \mathrm{~km} \mathrm{)} \mathrm{of} \mathrm{travel}$ | 58 ft -lbs | ( $79 \mathrm{~N}-\mathrm{m}$ ) | $845 \mathrm{ft}-\mathrm{lbs}$ | ( $1146 \mathrm{~N}-\mathrm{m}$ ) |
| Static Pitch \& Yaw Moment | 300 ft -lbs | ( $407 \mathrm{~N}-\mathrm{m}$ ) | 4,300 ft-lbs | ( $5830 \mathrm{~N}-\mathrm{m}$ ) |
| Each Bearing Dyn. Capacity 2 million inches ( 50 km ) of travel | 2,200 lbs | ( 998 kg ) | 2,200 lbs | $\left(\begin{array}{lll} \\ \text { ( }\end{array}\right.$ |
|  | 750 lbs | ( 340 kg ) | 750 lbs | $(340 \mathrm{~kg}$ ) |
| Each Bearing Static Load Capacity | 3,800 lbs | ( 1724 kg ) | 3,800 lbs | $(1724 \mathrm{~kg}$ ) |
| Thrust Force Capacity 10 million screw revolutions | 1,050 lbs | ( 476 kg ) | 1,050 lbs | $(476 \mathrm{~kg}$ ) |
| Thrust Force Capacity 500 million screw revolutions | 270 lbs | ( 122 kg ) | 270 lbs | $(122 \mathrm{~kg}$ ) |
| Maximum Acceleration | $386 \mathrm{in} / \mathrm{sec}^{2}$ | ( 9,8 m/sec ${ }^{2}$ ) | $772 \mathrm{in} / \mathrm{sec}^{2}$ | ( 19,6 m/sec ${ }^{2}$ ) |
| $\mathrm{d}_{1} \quad$ Center to center distance (spread) between the two rails | 5.280 in | $(134,1 \mathrm{~mm})$ | 5.280 in | $(134,1 \mathrm{~mm})$ |
| $\mathrm{d}_{2} \quad$ Center to center distance (spacing) of the bearings on a single rail |  |  | 7.870 in | (199,9 mm) |
| $\mathbf{d}_{\mathbf{r}}$ Center distance of the bearing to top of carriage plate surface | 1.900 in | $(48,3 \mathrm{~mm})$ | 1.900 in | ( 48,3 mm ) |


| Other | For 6 inch ( 2 bearing) \& 12 inch ( 4 bearing) Carriages |
| :---: | :---: |
| Table Material <br> Linear Rail Material <br> Screw Material (see pages $\mathrm{H}-18$ to $\mathrm{H}-21$ ) <br> Screw Material (see pages $\mathrm{H}-18$ to $\mathrm{H}-21$ ) | Base, Carriage, End Plates, \& Cover Plate option - 6061 anodized aluminum Case Hardened Steel <br> Acme Screw - Stainless Steel <br> Rolled Ball, Precision Ball, \& Ground Ball - Case Hardened Steel |
| Straightness <br> Flatness <br> Orthogonality (multi-axis systems) <br> Friction Coefficient | $\begin{gathered} <0.00004 \text { in } / \mathrm{in} \quad(<1,02 \quad \text { microns } / 25 \mathrm{~mm}) \\ <0.00004 \mathrm{in} / \mathrm{in} \quad(<1,02 \quad \text { microns } / 25 \mathrm{~mm}) \\ <15 \text { arc-seconds } \\ <0.01 \end{gathered}$ |
| Motor Mount <br> Coupling <br> Waycover Material | NEMA 23 \& 34 Mounts, Metric Mounts, Motor Wraps, and Hand Crank Option Three (3) different styles available Hypilon Polyester Bellows firmly mounted to carriage \& end plates |

Dimensions \& Specifications

- Without Waycovers -

| Model <br> Number | Travel <br> Length <br> inches <br> (mm) | Table Dimensions inches (mm) |  | Mounting Dimensions inches (mm) |  |  | Screw Length inches (mm) | $\begin{aligned} & \hline \text { Table (1) } \\ & \text { Weight } \\ & \text { lbs } \\ & (\mathrm{kg}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C | D | M |  |  |
| 200607-WC0 | $\begin{gathered} 7 \\ (175) \end{gathered}$ | $\begin{gathered} 14.75 \\ (374,6) \end{gathered}$ | $\begin{aligned} & 17.25 \\ & (438,1) \end{aligned}$ | $\begin{aligned} & 2.120 \\ & (53,8) \end{aligned}$ | 3 | 8 | $\begin{aligned} & 16.37 \\ & (416) \end{aligned}$ | $\begin{gathered} 38.3 \\ (17,4) \end{gathered}$ |
| 200614-WC0 | $\begin{gathered} 14 \\ (355) \end{gathered}$ | $\begin{aligned} & 21.62 \\ & (549,1) \end{aligned}$ | $\begin{aligned} & 24.12 \\ & (612,6) \end{aligned}$ | $\begin{aligned} & 2.060 \\ & (52,3) \end{aligned}$ | 5 | 12 | $\begin{gathered} 23.24 \\ (590) \end{gathered}$ | $\begin{gathered} 47.4 \\ (21,5) \end{gathered}$ |
| 200621-WC0 | $\begin{gathered} 21 \\ (530) \end{gathered}$ | $\begin{array}{r} 28.50 \\ (723,9) \end{array}$ | $\begin{array}{r} 31.00 \\ (787,4) \end{array}$ | $\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$ | 7 | 16 | $\begin{gathered} 30.12 \\ (765) \end{gathered}$ | $\begin{gathered} 56.5 \\ (25,6) \end{gathered}$ |
| 200628-WC0 | $\begin{gathered} 28 \\ (710) \end{gathered}$ | $\begin{aligned} & 35.25 \\ & (895,3) \end{aligned}$ | $\begin{array}{r} 37.75 \\ (958,8) \end{array}$ | $\begin{aligned} & 1.870 \\ & (47,5) \end{aligned}$ | 9 | 20 | $\begin{gathered} 36.87 \\ (936) \end{gathered}$ | $\begin{gathered} 65.6 \\ (29,8) \end{gathered}$ |
| 200635-WC0 | $\begin{gathered} 35 \\ (885) \end{gathered}$ | $\begin{gathered} 42.25 \\ (1073,1) \end{gathered}$ | $\begin{gathered} 44.75 \\ (1136,6) \end{gathered}$ | $\begin{aligned} & 1.870 \\ & (47,5) \end{aligned}$ | 11 | 24 | $\begin{aligned} & 43.87 \\ & (1114) \end{aligned}$ | $\begin{gathered} 74.7 \\ (33,9) \end{gathered}$ |
| 200641-WCO | $\begin{gathered} 41 \\ (1040) \end{gathered}$ | $\begin{gathered} 49.00 \\ (1244,6) \end{gathered}$ | $\begin{gathered} 51.50 \\ (1308,1) \end{gathered}$ | $\begin{aligned} & 1.750 \\ & (44,4) \end{aligned}$ | 13 | 28 | $\begin{aligned} & 50.62 \\ & (1286) \end{aligned}$ | $\begin{gathered} 83.8 \\ (38,0) \end{gathered}$ |
| 200655-WC0 | $\begin{gathered} 55 \\ (1395) \end{gathered}$ | $\begin{gathered} 62.75 \\ (1593,8) \end{gathered}$ | $\begin{gathered} 65.25 \\ (1657,3) \end{gathered}$ | $\begin{aligned} & 1.620 \\ & (41,1) \end{aligned}$ | 17 | 36 | $\begin{aligned} & 64.37 \\ & (1635) \end{aligned}$ | $\begin{aligned} & 100.0 \\ & (45,4) \end{aligned}$ |
| 201207-WC0 | $\begin{gathered} 7 \\ (175) \end{gathered}$ | $\begin{aligned} & 20.75 \\ & (527,0) \end{aligned}$ | $\begin{aligned} & 23.25 \\ & (590,5) \end{aligned}$ | $\begin{aligned} & 1.620 \\ & (41,1) \end{aligned}$ | 5 | 12 | $\begin{gathered} 22.37 \\ (568) \end{gathered}$ | $\begin{gathered} 54.3 \\ (24,6) \end{gathered}$ |
| 201214-WCO | $\begin{gathered} 14 \\ (355) \end{gathered}$ | $\begin{aligned} & 27.62 \\ & (701,5) \end{aligned}$ | $\begin{gathered} 30.12 \\ (765,0) \end{gathered}$ | $\begin{aligned} & 1.560 \\ & (39,6) \end{aligned}$ | 7 | 16 | $\begin{gathered} 29.24 \\ (743) \end{gathered}$ | $\begin{gathered} 63.4 \\ (28,8) \end{gathered}$ |
| 201221-WCO | $\begin{gathered} 21 \\ (530) \end{gathered}$ | $\begin{gathered} 34.50 \\ (876,3) \end{gathered}$ | $\begin{gathered} 37.00 \\ (939,8) \end{gathered}$ | $\begin{aligned} & 1.500 \\ & (38,1) \end{aligned}$ | 9 | 20 | $\begin{gathered} 36.12 \\ (917) \end{gathered}$ | $\begin{gathered} 72.5 \\ (32,9) \end{gathered}$ |
| 201228-WC0 | $\begin{gathered} 28 \\ (710) \end{gathered}$ | $\begin{gathered} 41.25 \\ (1047,7) \end{gathered}$ | $\begin{gathered} 43.75 \\ (1111,2) \end{gathered}$ | $\begin{aligned} & 1.370 \\ & (34,8) \end{aligned}$ | 11 | 24 | $\begin{aligned} & 42.87 \\ & (1089) \end{aligned}$ | $\begin{gathered} 81.6 \\ (37,0) \end{gathered}$ |
| 201235-WC0 | $\begin{gathered} 35 \\ (885) \end{gathered}$ | $\begin{gathered} 48.25 \\ (1225,5) \end{gathered}$ | $\begin{gathered} 50.75 \\ (1289,0) \end{gathered}$ | $\begin{aligned} & 1.370 \\ & (34,8) \end{aligned}$ | 13 | 28 | $\begin{aligned} & 49.87 \\ & (1267) \end{aligned}$ | $\begin{gathered} 90.7 \\ (41,1) \end{gathered}$ |
| 201241-WC0 | $\begin{gathered} 41 \\ (1040) \end{gathered}$ | $\begin{gathered} 55.00 \\ (1397,0) \end{gathered}$ | $\begin{gathered} 57.50 \\ (1460,5) \end{gathered}$ | $\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$ | 15 | 32 | $\begin{aligned} & 56.62 \\ & (1438) \end{aligned}$ | $\begin{gathered} 99.8 \\ (45,3) \end{gathered}$ |
| 201255-WC0 | $\begin{gathered} 55 \\ (1395) \end{gathered}$ | $\begin{gathered} 68.75 \\ (1746,2) \end{gathered}$ | $\begin{gathered} 71.25 \\ (1809,7) \end{gathered}$ | $\begin{aligned} & 1.120 \\ & (28,4) \end{aligned}$ | 19 | 40 | $\begin{aligned} & 70.37 \\ & (1787) \end{aligned}$ | $\begin{aligned} & 117.0 \\ & (53,1) \end{aligned}$ |

[- $06=6$ inch ( $152,4 \mathrm{~mm}$ ) carriage length; 2 bearings; carriage weight $=11.0 \mathrm{lbs} .(4,99 \mathrm{~kg})$
L $12=12$ inch $(304,8 \mathrm{~mm})$ carriage length; 4 bearings; carriage weight $=19.0 \mathrm{lbs} .(8,62 \mathrm{~kg})$

## Footnotes:

(1) Weight shown is with a 0.750 inch $(20 \mathrm{~mm})$ diameter screw, a NEMA 23 motor mount [ $0.34 \mathrm{lbs}(0,16 \mathrm{~kg})]$, and a C125 style [ $0.22 \mathrm{lbs}(0,10 \mathrm{~kg})]$ coupling.

## Sold \& Serviced By:

ELECTROMATE
Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

Dimensions

- Without Waycovers -


Note: Any 200 series table can be mounted on top of any second 200 series, in order to create $X-Y$ multiple axis configurations. The carriage's threaded stainless steel insert hole pattern DOES NOT exactly match the base mounting hole pattern on each table, therefore machining of the bottom axis carriage prate is recquired.
Contact LINTECH.

Dimensions \& Specifications

- With Waycovers -

| Model <br> Number | Travel <br> Length <br> inches <br> (mm) | Table Dimensions inches (mm) |  | Mounting Dimensions inches (mm) |  |  | Screw Length inches (mm) | Table (1) Weight lbs (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | A | B | C | D | M |  |  |
| 200606-WC1 | $\begin{gathered} 6 \\ (150) \end{gathered}$ | $\begin{aligned} & 14.75 \\ & (374,6) \end{aligned}$ | $\begin{gathered} 17.25 \\ (438,1) \end{gathered}$ | $\begin{aligned} & 2.120 \\ & (53,8) \end{aligned}$ | 3 | 8 | $\begin{aligned} & 16.37 \\ & (416) \end{aligned}$ | $\begin{gathered} 40.0 \\ (18,1) \end{gathered}$ |
| 200612-WC1 | $\begin{gathered} 12 \\ (300) \end{gathered}$ | $\begin{aligned} & 21.62 \\ & (549,1) \end{aligned}$ | $\begin{aligned} & 24.12 \\ & (612,6) \end{aligned}$ | $\begin{aligned} & 2.060 \\ & (52,3) \end{aligned}$ | 5 | 12 | $\begin{gathered} 23.24 \\ (590) \end{gathered}$ | $\begin{gathered} 50.0 \\ (22,7) \end{gathered}$ |
| 200618-WC1 | $\begin{gathered} 18 \\ (455) \end{gathered}$ | $\begin{gathered} 28.50 \\ (723,9) \end{gathered}$ | $\begin{array}{r} 31.00 \\ (787,4) \end{array}$ | $\begin{aligned} & 2.000 \\ & (50,8) \end{aligned}$ | 7 | 16 | $\begin{gathered} 30.12 \\ (765) \end{gathered}$ | $\begin{gathered} 60.0 \\ (27,2) \end{gathered}$ |
| 200624-WC1 | $\begin{gathered} 24 \\ (605) \end{gathered}$ | $\begin{aligned} & 35.25 \\ & (895,3) \end{aligned}$ | $\begin{array}{r} 37.75 \\ (958,8) \end{array}$ | $\begin{aligned} & 1.870 \\ & (47,5) \end{aligned}$ | 9 | 20 | $\begin{gathered} 36.87 \\ (936) \end{gathered}$ | $\begin{gathered} 70.0 \\ (31,8) \end{gathered}$ |
| 200630-WC1 | $\begin{gathered} 30 \\ (760) \end{gathered}$ | $\begin{gathered} 42.25 \\ (1073,1) \end{gathered}$ | $\begin{gathered} 44.75 \\ (1136,6) \end{gathered}$ | $\begin{aligned} & 1.870 \\ & (47,5) \end{aligned}$ | 11 | 24 | $\begin{aligned} & 43.87 \\ & (1114) \end{aligned}$ | $\begin{gathered} 80.0 \\ (36,3) \end{gathered}$ |
| 200636-WC1 | $\begin{gathered} 36 \\ (910) \end{gathered}$ | $\begin{gathered} 49.00 \\ (1244,6) \end{gathered}$ | $\begin{gathered} 51.50 \\ (1308,1) \end{gathered}$ | $\begin{aligned} & 1.750 \\ & (44,4) \end{aligned}$ | 13 | 28 | $\begin{aligned} & 50.62 \\ & (1286) \end{aligned}$ | $\begin{gathered} 90.0 \\ (40,8) \end{gathered}$ |
| 200648-WC1 | $\begin{gathered} 48 \\ (1215) \end{gathered}$ | $\begin{gathered} 62.75 \\ (1593,8) \end{gathered}$ | $\begin{gathered} 65.25 \\ (1657,3) \end{gathered}$ | $\begin{aligned} & 1.620 \\ & (41,1) \end{aligned}$ | 17 | 36 | $\begin{aligned} & 64.37 \\ & (1635) \end{aligned}$ | $\begin{aligned} & 108.0 \\ & (49,0) \end{aligned}$ |
| 201206-WC1 | $\begin{gathered} 6 \\ (150) \end{gathered}$ | $\begin{aligned} & 20.75 \\ & (527,0) \end{aligned}$ | $\begin{aligned} & 23.25 \\ & (590,5) \end{aligned}$ | $\begin{aligned} & 1.620 \\ & (41,1) \end{aligned}$ | 5 | 12 | $\begin{gathered} 22.37 \\ (568) \end{gathered}$ | $\begin{gathered} 56.0 \\ (25,4) \end{gathered}$ |
| 201212-WC1 | $\begin{gathered} 12 \\ (300) \end{gathered}$ | $\begin{aligned} & 27.62 \\ & (701,5) \end{aligned}$ | $\begin{gathered} 30.12 \\ (765,0) \end{gathered}$ | $\begin{aligned} & 1.560 \\ & (39,6) \end{aligned}$ | 7 | 16 | $\begin{gathered} 29.24 \\ (743) \end{gathered}$ | $\begin{gathered} 66.0 \\ (29,9) \end{gathered}$ |
| 201218-WC1 | $\begin{gathered} 18 \\ (455) \end{gathered}$ | $\begin{gathered} 34.50 \\ (876,3) \end{gathered}$ | $\begin{gathered} 37.00 \\ (939,8) \end{gathered}$ | $\begin{aligned} & 1.500 \\ & (38,1) \end{aligned}$ | 9 | 20 | $\begin{gathered} 36.12 \\ (917) \end{gathered}$ | $\begin{gathered} 76.0 \\ (34,5) \end{gathered}$ |
| 201224-WC1 | $\begin{gathered} 24 \\ (605) \end{gathered}$ | $\begin{gathered} 41.25 \\ (1047,7) \end{gathered}$ | $\begin{gathered} 43.75 \\ (1111,2) \end{gathered}$ | $\begin{aligned} & 1.370 \\ & (34,8) \end{aligned}$ | 11 | 24 | $\begin{aligned} & 42.87 \\ & (1089) \end{aligned}$ | $\begin{gathered} 86.0 \\ (39,0) \end{gathered}$ |
| 201230-WC1 | $\begin{gathered} 30 \\ (760) \end{gathered}$ | $\begin{gathered} 48.25 \\ (1225,5) \end{gathered}$ | $\begin{gathered} 50.75 \\ (1289,0) \end{gathered}$ | $\begin{aligned} & 1.370 \\ & (34,8) \end{aligned}$ | 13 | 28 | $\begin{aligned} & 49.87 \\ & (1267) \end{aligned}$ | $\begin{gathered} 96.0 \\ (43,6) \end{gathered}$ |
| 201236-WC1 | $\begin{gathered} 36 \\ (910) \end{gathered}$ | $\begin{gathered} 55.00 \\ (1397,0) \end{gathered}$ | $\begin{gathered} 57.50 \\ (1460,5) \end{gathered}$ | $\begin{aligned} & 1.250 \\ & (31,7) \end{aligned}$ | 15 | 32 | $\begin{aligned} & 56.62 \\ & (1438) \end{aligned}$ | $\begin{aligned} & 106.0 \\ & (48,1) \end{aligned}$ |
| 201248-WC1 | $\begin{gathered} 48 \\ (1215) \end{gathered}$ | $\begin{gathered} 68.75 \\ (1746,2) \end{gathered}$ | $\begin{gathered} 71.25 \\ (1809,7) \end{gathered}$ | $\begin{aligned} & 1.120 \\ & (28,4) \end{aligned}$ | 19 | 40 | $\begin{aligned} & 70.37 \\ & (1787) \end{aligned}$ | $\begin{aligned} & 125.0 \\ & (56,7) \end{aligned}$ |

- $06=6$ inch ( $152,4 \mathrm{~mm}$ ) carriage length; 2 bearings; carriage weight $=11.0 \mathrm{lbs} .(4,99 \mathrm{~kg})$

L $12=12$ inch $(304,8 \mathrm{~mm})$ carriage length; 4 bearings; carriage weight $=19.0 \mathrm{lbs} .(8,62 \mathrm{~kg})$

## Footnotes:

(1) Weight shown is with a 0.750 inch $(20 \mathrm{~mm})$ diameter screw, a NEMA 23 motor mount $[0.34 \mathrm{lbs}(0,16 \mathrm{~kg})]$, and a C125 style [ $0.22 \mathrm{lbs}(0,10 \mathrm{~kg})]$ coupling.

## Sold \& Serviced By:

ELECTROMATE
Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

## Dimensions

- With Waycovers -


Note: Any 200 series table can be mounted on top of any second 200 series, in order to create $X-Y$ multiple axis configurations. The carriage's threaded stainless steel insert hole pattern DOES NOT exactly match the base mounting hole pattern on each table, therefore machining of the bottom axis carriage prate servicuired.
Contact LINTECH.

## Linear Bearing Load Capacities

The following equation, and graphs, can be used to help determine the linear bearing life, and load capacity, of a 200 series positioning table.

$$
L=\left[\frac{R}{F \times S}\right]^{3} \times B
$$

$\mathbf{L}=$ calculated travel life (millions of inches or Km)
$\mathbf{R}=$ rated dynamic load capacity of carriage (or each bearing) at 2 million inches of travel or 50 Km
F = user applied load
S = safety factor (1 to 8)
B $=$ either 2 (for millions of inches) or 50 (for Km)


Dynamic Moment Load ( $\mathrm{M}_{\mathrm{R}}$ ) Capacity Load applied away from Carriage Center


Travel Life
millions of inches (Km)

Dynamic Horizontal Load Capacity
Load Centered on Carriage

| travel life |  | 2 Bearing |  | 4 Bearing |  |
| :---: | :---: | :---: | ---: | ---: | ---: |
| millions of inches | $(\mathrm{Km})$ | lbs | $(\mathrm{kg})$ | lbs | $(\mathrm{kg})$ |
| 2 | $(50)$ | 4,400 | $(1996)$ | 8,800 | $(1724)$ |
| 50 | $(1270)$ | 1,500 | $(680)$ | 3,000 | $(1360)$ |
| 100 | $(2540)$ | 1,180 | $(535)$ | 2,360 | $(1070)$ |



Dynamic Moment Load ( $M_{p}$ \& $M_{Y}$ ) Capacity
Load applied away from Carriage Center

| travel life |  | 2 Bearing |  | 4 Bearing |  |
| :---: | :---: | ---: | ---: | ---: | ---: |
| millions of inches | $(\mathrm{Km})$ | ft -lbs | $(\mathrm{N}-\mathrm{m})$ | $\mathrm{ft}-\mathrm{lbs}$ | $(\mathrm{N}-\mathrm{m})$ |
| 2 | $(50)$ | 175 | $(237)$ | 2,485 | $(3369)$ |
| 50 | $(1270)$ | 58 | $(79)$ | 845 | $(1146)$ |
| 100 | $(2540)$ | 47 | $(64)$ | 670 | $(908)$ |
| Ratings are based on $\mathrm{d}_{3}=0 \& \mathrm{~d}_{4}=12$ inches $(305 \mathrm{~mm})$ |  |  |  |  |  |



## Screw Travel Life

The life of an acme or ball screw can be estimated by evaluating the load applied to the nut. The applied load "as seen by the screw nut" depends upon the table orientation. Typically, the extra force acting upon the screw nut during the acceleration interval is offset by a reduction in force during the deceleration interval. Therefore, evaluating the life of the screw nut at a constant speed is adequate. The life of the screw nut may not be the limiting element for a given application. See page H-12 for load/life capacity of the screw end support bearings.

Horizontal Application $F=(W \times \mu)+E$

## Vertical Application

F = W + E
$L=\left[\frac{R}{F \times S}\right]^{3} \times B$
$\mathbf{B}=$ either 1 (for millions of inches) or 25 (for Km )
$\mathbf{E}=$ externally applied extra forces
$\mathbf{F}=$ applied axial load (as seen by screw nut)
$\mathbf{L}=$ calculated travel life (millions of inches or Km)
$\mathbf{R}=$ rated dynamic load capacity of screw nut at 1 million inches of travel or 25 Km (see pages $\mathrm{H}-20$ \& $\mathrm{H}-21$ )
$\mathbf{S}=$ safety factor (1 to 8)
$\mathbf{W}=$ user mounted load weight to carriage
$\boldsymbol{\mu}=$ coefficient of friction for linear bearing system (0.01)


## Thrust Capacity (axial load)

The life of the screw end support bearings can be estimated by evaluating the applied axial (thrust) load. The applied load "as seen by the bearings" depends upon the table orientation. Typically, the extra force acting upon the bearings during the acceleration interval is offset by a reduction in force during the deceleration interval. Therefore, evaluating the life of the bearings at a constant speed is adequate. The life of the screw end support bearings may not be the limiting element for a given application. See page $\mathrm{H}-11$ for load/life capacity of acme and ball screw nuts.

Horizontal Application $F=(W \times \mu)+E$

Vertical Application
F = W + E
$L=\left[\frac{R}{F \times S}\right]^{3} \times B$

B = 2 (for millions of revolutions)
E = externally applied extra forces
$\mathbf{F}=$ applied axial load (as seen by the bearings)
L = calculated life (millions of revolutions)
$\mathbf{R}=$ dynamic load capacity of bearings at 2 million screw revolutions (see below)
$\mathbf{S}=$ safety factor (1 to 8)
$\mathbf{W}=$ user mounted load weight to carriage
$\boldsymbol{\mu}=\boldsymbol{c o e f f i c i e n t ~ o f ~ f r i c t i o n ~ f o r ~ l i n e a r ~ b e a r i n g ~ s y s t e m ~ ( 0 . 0 1 ) ~}$

| Screw <br> End Supports | Number of Screw Revolutions <br> millions of screw revolutions |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Static | 1 | 2 | 10 | 50 | 100 | 500 |
| Thrust  <br> Capacity lbs <br> (kg)  | 2,110 <br> $(957)$ | 2,110 <br> $(957)$ | 1,720 <br> $(780)$ | 1,050 <br> $(476)$ | 585 <br> $(265)$ | 465 <br> $(211)$ | 270 <br> $(122)$ |



## Moment of Inertia Values

The "moment of inertia" of an object is a gauge of the strength of that object to resist deflecting when used in an application or orientation where deflection might occur. The higher an I value relates to a lower amount of deflection.

$\mathbf{I}=63.1 \mathrm{in}^{4}\left(262.7 \times 10^{5} \mathrm{~mm}^{4}\right)$


## Multi-Axis Configurations

LINTECH can provide various adapter plates, and vertical adapter brackets, to facilitate the construction of $\mathrm{X}-\mathrm{Y}, \mathrm{X}-\mathrm{Z}$, and $X-Y-Z$ multiple axis configurations. There are literally hundreds of different possible configurations available. See below for some of the more common systems. LINTECH has a great deal of experience in dealing with multiple axis configurations. Sometimes different standard table series can be mounted together to form a custom system. Other times, a complete custom assembly is created, due to the application details. Contact $\operatorname{LINTECH}$ for more information.




## Sold \& Serviced By:

## End of Travel (EOT) Switches \& Home Switch

LINTECH provides several options for EOT \& home switches. One style uses mechanically actuated switches, while other styles use "non-contact" versions. When ordered with a LINTECH 200 series table, each switch is mounted to the base of the table, while the actuating cams are mounted to the carriage assembly. Each switch is mounted to a plate that allows for a 0.625 inch ( 16 mm ) adjustment range. The switches are pre-wired by LINTECH for easy interfacing to the users Motion Controller.

## End of Travel (EOT) Switches

End of travel (EOT) switches can be utilized by a motion controller to stop carriage motion, thereby preventing any damage to personnel, table carriage, or user mounted load if the extreme end of travel has been reached by the carriage. There are two EOT switches mounted to the side of the table, one on each end. The CCW switch is mounted at the motor mount end, while the CW switch is located at the opposite end of the table. LINTECH provides normally closed (NC) end of travel switches. This provides for a power-off fail safe system, where the position controller can detect broken wires. It is highly recommended that any positioning table used with a position controller, should have end of travel switches installed for protection of personnel, table carriage, and user mounted load.

## Home Switch

The home switch can be utilized by a motion controller as a known fixed mechanical location on the positioning table. The switch is located on the opposite side of the EOT switches, at the motor mount end, and is a normally open (NO) switch.

## Switch Locations

The following diagram shows the locations of the switches when ordered from LINTECH.


Note: For the 200-WC0 series, EOT switches are normally located 0.125 inches ( 3 mm ) inward from the maximum travel hard stops. Thus, reducing overall system travel by 0.25 inches $(6 \mathrm{~mm})$ from listed table travel for each model \#. For the 200-WC1 series there is NO reduction of listed travel length when using EOT switches.

Note: Each switch bracket has a 0.625 inch ( 16 mm ) adjustment range

| Switch Type | Cost | Repeatability <br> inches (microns) | Actuated | Power Supply Required | Activation Area <br> inches (mm) | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mechanical | least expensive | $+/-\underset{(5)}{0.0002}$ | mechanical | No | $\begin{gathered} 1.75 \\ (44,45) \end{gathered}$ | for most applications |
| reed | slightly more | $+/-\underset{(50)}{0.0020}$ | magnetic | No | $\begin{gathered} 0.30 \\ (7,62) \end{gathered}$ | for non-contact \& low repeatable applications |
| hall effect | medium priced | $+/-\underset{(5)}{0.0002}$ | magnetic | Yes | $\begin{gathered} 0.32 \\ (8,13) \end{gathered}$ | for non-contact and wash down applications |
| proximity | most expensive | $+/-\quad 0.0002$ <br> (5) | non-magnetic | Yes | $\begin{gathered} 1.75 \\ (44,45) \end{gathered}$ | for non-contact, high speed, \& wash down applications |

Sold \& Serviced By:
Note: The repeatability of any switch is dependent upon several factors: carriage speed, accel rate, load weight, switch style, and theppsitian
controller. LINTECH's ratings are based upon a carriage speed of 0.5 inches $/ \mathrm{sec}(12.7 \mathrm{~mm} / \mathrm{sec})$ and a no load concuion.
Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

## End of Travel (EOT) Switches \& Home Switch

## Mechanical Switches


\(\left.\begin{array}{ll}Repeatability \& :+/-0.0002 inch (5 microns) <br>
Electrical \& : 5 \mathrm{amps} @ 125 VAC <br>

1 \mathrm{amp} @ 85 \mathrm{VDC}\end{array}\right]\)|  | : mechanical cam |
| :--- | :--- |
| Activation Style | $: 1.75$ inches $(44,45 \mathrm{~mm})$ of travel |
| Activation Area | $:-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Temperature Range | : non wash down |
| Environment | : none |
| Added Table Width |  |
| Individual Switch Wiring | $:$ none |



Standard LINTECH Wiring
(provided when switch option is ordered with any table)
: from table end plate, 10 foot ( 3 m ) shielded cable, 6 conductor, 24 AWG, unterminated leads

| Wire Color | Description |  |
| :---: | :---: | :---: |
| Black <br> Blue | CW EOT CW Common |  |
| Red White | CCW EOT CCW Common | $\cdots \mathrm{NC}$ |
| Brown Green | HOME HOME Common |  |
| Silver | Shield |  |

Note: Hermetically sealed mechanical switches can be ordered as an option. This may be desired for "wash down" applications. Contact LINTECH.

## Non-Contact Reed Switches



Repeatability
Electrical : +/- 0.0020 inch ( 50 microns)
: 1.0 amps @ 125 VAC $0.5 \mathrm{amps} @ 100$ VDC

Activation Style : magnetic
Activation Area
Temperature Range
Environment
: 0.30 inches $(7,62 \mathrm{~mm})$ of travel
$:-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
: non wash down
Added Table Width : none

Individual Switch Wiring : 12 inch ( 305 mm ) leads


Standard LINTECH Wiring (provided when switch option is ordered with any table)
: from table end plate, 10 foot ( 3 m ) shielded cable, 6 conductor, 24 AWG, unterminated leads


CW - Clockwise
CCW - Counter Clockwise
EOT - End of Travel
NC - Normally Closed
NO - Normally Open

Toll Free Phone (877) SERV098
Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

## End of Travel (EOT) Switches \& Home Switch

## Non-Contact Hall Effect Switches



Repeatability
Electrical

Actuation Style
Activation Area $: 0.32$ inches $(8,13 \mathrm{~mm})$ of travel
Temperature Range
Environment
Added Table Width

Individual Switch Wiring
: +/- 0.0002 inch (5 microns)
: 5-24 VDC
15 mA - power input
25 mA max - signal
: magnetic
: $-10^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
: wash down
: none
: 12 inch ( 305 mm ) leads


Standard LINTECH Wiring (provided when switch option is ordered with any table)
from table end plate, 10 foot ( 3 m ) shielded cable; 9 conductor, 24 AWG, unterminated leads

| Wire Color | Description |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Brown | CW Power <br> CW EOT <br> CW Common | (brown) | switch | NC |
| Black |  | (black) |  |  |
| Blue |  | (blue) |  |  |
| Red | CCW Power | (brown) | switch | NC |
| White | CCW EOT | (black) |  |  |
| Green | CCW Common | (blue) |  |  |
| Orange | Home Power | (brown) | switch | NO |
| Yellow | Home | (black) |  |  |
| Grey | Home Common | (blue) |  |  |
| Silver | Shield |  |  |  |

## Non-Contact Proximity Switches



Repeatability
Electrical

Actuation Style
Activation Area
Temperature Range
Environment
Added Table Width

Individual Switch Wiring
: +/- 0.0002 inch (5 microns)
: 10-28 VDC
15 mA - power input 100 mA max - signal : non-magnetic cam
: 1.75 inches $(44,45 \mathrm{~mm})$ of travel
$:-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
: IEC IP67 wash down : none
: 6.5 foot ( 2 m ) cable for NPN : 3.3 foot ( 1 m ) cable for PNP


Standard LINTECH Wiring (provided when switch option is ordered with any table)
: from table end plate, 10 foot ( 3 m ) shielded cable; 9 conductor, 24 AWG, unterminated leads

| Wire Color | Description |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Brown | CW Power <br> CW EOT <br> CW Common | (brown) |  |  |
| Black |  | (black) | switch | NC |
| Blue |  | (blue) |  |  |
| Red | CCW Power (brown) |  |  |  |
| White | CCW EOT | (black) | switch | NC |
| Green | CCW Common | (blue) |  |  |
| Orange | Home Power | Spbabentserviced By: |  |  |
| Yellow | Home | S(1ad) Fiswiteh |  |  |
| Grey | Home Common | Thbllefree Phone (8) |  | 77) S |
|  |  | Toll Free Fax (87 www.electron |  | 7) SE |
| Silver | Shield |  |  |  |
|  |  | sales@electromate.co |  |  |

## Screws - Acme \& Ball

Acme screws use a turcite (polymer), or bronze nut. The nut threads ride in the matching acme screw threads, much like the ordinary nut and bolt system. This produces a higher friction (lower efficiency) system than a ball screw assembly, since there are no rolling elements between the nut and the acme screw threads. For applications requiring low speeds, noise and duty cycles, an acme screw works fine. Also, an acme screw is a good choice for most vertical applications, as it typically prevents back driving of the attached load.

Ball screws are the screw of choice for high duty cycle, high speed, and long life applications. The 200 series tables can be fitted with an assortment of ball screws. The ball screw nut uses one or more circuits of recirculating steel balls which roll between the nut and ball screw grooves, providing an efficient low friction system. Using a higher lead
ball screw (for example a 0.500 inch lead instead of a 0.200 inch lead) will offer greater carriage speed for applications requiring rapid traverse, or fast, short incremental moves. Low wear and long life are key features of a ball screw system.

LINTECH provides three different ball screw configurations. The rolled ball screw system utilizes a tapped nut with a standard accuracy grade rolled screw. The precision ball screw system utilizes a ground nut with a higher accuracy grade rolled screw. The ground ball screw system utilizes a ground nut with a high accuracy precision ground screw.

Some screws are available with preloaded nuts. The preloaded nut assembly offers high bidirectional repeatability by eliminating backlash.

| Consideration | Acme Screw | Ball Screws |  |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Rolled | Precision | Ground |  |
| Audible noise | least audible noise | most audible noise | less audible noise than rolled screw | less audible noise than precision screw | Acme: no rolling elements provide for quiet operation. <br> Ball: recirculating balls in nut assembly transmit audible noise during motion; due to more accurate machining procedures - precision \& ground ball screws are quieter than rolled ball screws. |
| Back Driving Loads | may prevent back driving | can easily back drive a load | can easily back drive a load | can easily back drive a load | Acme: good for light loads \& vertical applications. Ball: recirculating balls in nut assembly produce a low friction system; vertical applications may require a brake to hold the load when no power is applied to the motor. |
| Backlash non-preloaded nut | will increase with wear | constant | constant | constant | Acme: preloaded nut assembly eliminates backlash. Ball: preloaded nut assembly eliminates backlash. |
| Duty Cycle | Iow to medium $\text { (< } 50 \% \text { ) }$ | high (100 \%) | high (100 \%) | high (100 \%) | Acme: low duty cycle due to high sliding friction. Ball: high duty cycle due to recirculating balls in nut assembly; high efficiency \& low friction system. |
| Life | shorter due to higher friction | long | long | long | Acme: mechanical wear related to duty cycle, load \& speed. Ball: minimal wear if operated in proper environment, within load specifications, and periodically lubricated. |
| Relative - Cost | slightly more than rolled ball | least expensive | slightly more than rolled ball | most expensive | Acme: a little more expensive than the rolled ball screw. Ball: due to more accurate manufacturing procedures precision rolled \& ground ball screws are more expensive. |
| Screw Efficiency | Iow <br> 40 \% -Acme <br> 60 \% -Turcite | high (90\%) | high (90\%) | high (90 \%) | Acme: low efficiency due to high sliding friction. Ball: high efficiency due to recirculating balls in nut assembly - low friction system. |
| Smoothness | can be smooth | least smooth | medium smoothness | smoothest | Acme: due to friction can start/stop at very low speeds. Ball: smoothness is constant through a wide speed range; due to more accurate manufacturing procedures precision rolled \& ground ball screws are smoother than rolled ball screws. |
| Speeds | Iow | high | high | high | Acme: high friction can causes excess heat \& wear at high speeds. Ball: recirculating balls in nut provide for a high speed systeffeduy: to low friction \& high efficiency. |

## Screws - Acme \& Ball

| 200-WC0 <br> Model Number | series <br> Travel Length $\begin{gathered} \text { in } \\ (\mathrm{mm}) \end{gathered}$ | 200-WC1 series |  | Maximum Safe Table Operating Speed ${ }^{(1)}$ $\mathrm{in} / \mathrm{sec}(\mathrm{mm} / \mathrm{sec})$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Screw |  |  |  |  |
|  |  |  |  | 0.750 dia. <br> 0.100 lead | $\begin{aligned} & 0.750 \text { dia. } \\ & 0.200 \text { lead } \end{aligned}$ | $\begin{aligned} & 0.750 \text { dia. } \\ & 0.500 \text { lead } \end{aligned}$ | 20 mm dia. 5 mm lead | 20 mm dia. <br> 20 mm lead |
| 200607 | $\begin{gathered} 7 \\ (175) \end{gathered}$ | 200606 | $\begin{gathered} 6 \\ (150) \end{gathered}$ | $\begin{gathered} 5.0 \\ (127) \end{gathered}$ | $\begin{aligned} & 10.0 \\ & (254) \end{aligned}$ | $\begin{aligned} & 25.0 \\ & (635) \end{aligned}$ | $\begin{gathered} 9.8 \\ (249) \end{gathered}$ | $\begin{aligned} & 39.3 \\ & \text { (998) } \end{aligned}$ |
| 200614 | $\begin{gathered} 14 \\ (355) \end{gathered}$ | 200612 | $\begin{gathered} 12 \\ (300) \end{gathered}$ | $\begin{gathered} 5.0 \\ (127) \end{gathered}$ | $\begin{aligned} & 10.0 \\ & (254) \end{aligned}$ | $\begin{aligned} & 25.0 \\ & (635) \end{aligned}$ | $\begin{gathered} 9.8 \\ (249) \end{gathered}$ | $\begin{aligned} & 39.3 \\ & \text { (998) } \end{aligned}$ |
| 200621 | $\begin{gathered} 21 \\ (530) \end{gathered}$ | 200618 | $\begin{gathered} 18 \\ (455) \end{gathered}$ | $\begin{gathered} 5.0 \\ (127) \end{gathered}$ | $\begin{aligned} & 10.0 \\ & (254) \end{aligned}$ | $\begin{aligned} & 25.0 \\ & (635) \end{aligned}$ | $\begin{gathered} 9.8 \\ (249) \end{gathered}$ | $\begin{aligned} & 39.3 \\ & \text { (998) } \end{aligned}$ |
| 200628 | $\begin{gathered} 28 \\ (710) \end{gathered}$ | 200624 | $\begin{gathered} 24 \\ (605) \end{gathered}$ | $\begin{aligned} & 3.6 \\ & (91) \end{aligned}$ | $\begin{gathered} 7.1 \\ (180) \end{gathered}$ | $\begin{aligned} & 17.9 \\ & (455) \end{aligned}$ | $\begin{gathered} 7.1 \\ (180) \end{gathered}$ | $\begin{aligned} & 28.2 \\ & (716) \end{aligned}$ |
| 200635 | $\begin{gathered} 35 \\ (885) \end{gathered}$ | 200630 | $\begin{gathered} 30 \\ (760) \end{gathered}$ | $\begin{aligned} & 2.5 \\ & (63) \end{aligned}$ | $\begin{gathered} 5.0 \\ (127) \end{gathered}$ | $\begin{aligned} & 12.4 \\ & (315) \end{aligned}$ | $\begin{gathered} 4.9 \\ (124) \end{gathered}$ | $\begin{aligned} & 19.7 \\ & (500) \end{aligned}$ |
| 200641 | $\begin{gathered} 41 \\ (1040) \end{gathered}$ | 200636 | $\begin{gathered} 36 \\ (910) \end{gathered}$ | $\begin{gathered} 1.8 \\ (46) \end{gathered}$ | $\begin{aligned} & 3.7 \\ & \text { (94) } \end{aligned}$ | $\begin{gathered} 9.2 \\ (234) \end{gathered}$ | $\begin{aligned} & 3.6 \\ & (91) \end{aligned}$ | $\begin{aligned} & 14.6 \\ & (371) \end{aligned}$ |
| 200655 | $\begin{gathered} 55 \\ (1395) \end{gathered}$ | 200648 | $\begin{gathered} 48 \\ (1215) \end{gathered}$ | $\begin{aligned} & 1.1 \\ & (28) \end{aligned}$ | $\begin{aligned} & 2.2 \\ & (56) \end{aligned}$ | $\begin{gathered} 5.6 \\ (142) \end{gathered}$ | $\begin{aligned} & 2.2 \\ & (56) \end{aligned}$ | $\begin{gathered} 8.9 \\ (226) \end{gathered}$ |
| 201207 | $\begin{gathered} 7 \\ (175) \end{gathered}$ | 201206 | $\begin{gathered} 6 \\ (150) \end{gathered}$ | $\begin{gathered} 5.0 \\ (127) \end{gathered}$ | $\begin{aligned} & 10.0 \\ & (254) \end{aligned}$ | $\begin{aligned} & 25.0 \\ & (635) \end{aligned}$ | $\begin{gathered} 9.8 \\ (249) \end{gathered}$ | $\begin{aligned} & 39.3 \\ & (998) \end{aligned}$ |
| 201214 | $\begin{gathered} 14 \\ (355) \end{gathered}$ | 201212 | $\begin{gathered} 12 \\ (300) \end{gathered}$ | $\begin{gathered} 5.0 \\ (127) \end{gathered}$ | $\begin{aligned} & 10.0 \\ & (254) \end{aligned}$ | $\begin{aligned} & 25.0 \\ & (635) \end{aligned}$ | $\begin{gathered} 9.8 \\ (249) \end{gathered}$ | $\begin{aligned} & 39.3 \\ & (998) \end{aligned}$ |
| 201221 | $\begin{gathered} 21 \\ (530) \end{gathered}$ | 201218 | $\begin{gathered} 18 \\ (455) \end{gathered}$ | $\begin{aligned} & 3.7 \\ & \text { (94) } \end{aligned}$ | $\begin{gathered} 7.5 \\ (190) \end{gathered}$ | $\begin{aligned} & 18.7 \\ & (475) \end{aligned}$ | $\begin{gathered} 7.4 \\ (188) \end{gathered}$ | $\begin{aligned} & 29.5 \\ & (749) \end{aligned}$ |
| 201228 | $\begin{gathered} 28 \\ (710) \end{gathered}$ | 201224 | $\begin{gathered} 24 \\ (605) \end{gathered}$ | $\begin{gathered} 2.6 \\ (66) \end{gathered}$ | $\begin{gathered} 5.2 \\ (132) \end{gathered}$ | $\begin{aligned} & 13.0 \\ & (330) \end{aligned}$ | $\begin{gathered} 5.1 \\ (129) \end{gathered}$ | $\begin{aligned} & 20.6 \\ & (523) \end{aligned}$ |
| 201235 | $\begin{gathered} 35 \\ (885) \end{gathered}$ | 201230 | $\begin{gathered} 30 \\ (760) \end{gathered}$ | $\begin{aligned} & 1.9 \\ & (48) \end{aligned}$ | $\begin{aligned} & 3.8 \\ & \text { (97) } \end{aligned}$ | $\begin{gathered} 9.5 \\ (241) \end{gathered}$ | $\begin{aligned} & 3.8 \\ & (97) \end{aligned}$ | $\begin{aligned} & 15.1 \\ & (384) \end{aligned}$ |
| 201241 | $\begin{gathered} 41 \\ (1040) \end{gathered}$ | 201236 | $\begin{gathered} 36 \\ (910) \end{gathered}$ | $\begin{aligned} & 1.5 \\ & (38) \end{aligned}$ | $\begin{aligned} & 2.9 \\ & (74) \end{aligned}$ | $\begin{gathered} 7.3 \\ (185) \end{gathered}$ | $\begin{gathered} 2.9 \\ (74) \end{gathered}$ | $\begin{aligned} & 11.6 \\ & \text { (295) } \end{aligned}$ |
| 201255 | $\begin{gathered} 55 \\ (1395) \end{gathered}$ | 201248 | $\begin{gathered} 48 \\ (1215) \end{gathered}$ | $\begin{aligned} & 0.9 \\ & (23) \end{aligned}$ | $\begin{aligned} & 1.9 \\ & (48) \end{aligned}$ | $\begin{gathered} 4.7 \\ (119) \end{gathered}$ | $\begin{aligned} & 1.8 \\ & (46) \end{aligned}$ | $\begin{gathered} 7.4 \\ (188) \end{gathered}$ |

## Footnotes:

(1) These listed speeds are a mechanical limitation. The maximum speed of a positioning table depends on the screw diameter, screw lead, screw length, and the screw end bearing support configuration. LINTECH uses a fixed-simple screw end bearing support configuration in its positioning tables. The correct motor \& drive system needs to be selected in order to obtain the above maximum table speeds.

## Sold \& Serviced By:

## ELECTROMATE

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

## Screws - Acme \& Ball



| SCREW | GROUND BALL SCREWS ${ }^{(3)}$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Dyn. (1) Capacity lbs (kg) | Static Capacity <br> lbs <br> (kg) | Screw Efficiency \% | $\begin{gathered} \text { Breakaway } \\ \text { Torque } \\ \text { oz-in } \\ (\mathrm{N}-\mathrm{m}) \end{gathered}$ | Position Accuracy inch/ft (microns $/ 300 \mathrm{~mm}$ ) | Backlash <br> inches (microns) | Unidirectional Repeatability inches (microns) |  | Bidirec Repeat inch (micro |  |
| 0.750 dia., 0.200 lead Preloaded (S216) | $\begin{aligned} & 1,070 \\ & (485) \end{aligned}$ | $\begin{aligned} & 3,990 \\ & (1809) \end{aligned}$ | 90 | $\begin{gathered} 25 \\ (0,18) \end{gathered}$ | $\text { < } 0.0006$ | 0 | $+\underset{(2,5)}{0.0001}$ |  | $\underset{(2,5)}{0.0001} \text { to }$ | $\begin{gathered} -0.0001 \\ (2,5) \end{gathered}$ |
| 0.750 dia., 0.500 lead Preloaded (S217) | $\begin{aligned} & 1,200 \\ & (544) \end{aligned}$ | $\begin{aligned} & 4,200 \\ & (1905) \end{aligned}$ | 90 | $\begin{gathered} 35 \\ (0,24) \end{gathered}$ | $<{ }_{(15)}^{0.0006}$ | 0 | $+/-\underset{(2,5)}{0.0001}$ |  | $\underset{(2,5)}{0.0001} \text { to }$ | $\begin{gathered} -0.0001 \\ (2,5) \end{gathered}$ |
| 20 mm dia., 5 mm lead Preloaded (S221) | $\begin{aligned} & 1,070 \\ & (485) \end{aligned}$ | $\begin{aligned} & 3,990 \\ & (1809) \end{aligned}$ | 90 | $\begin{gathered} 25 \\ (0,18) \end{gathered}$ | $<\underset{(15)}{0.0006}$ | 0 | $+\underset{(2,5)}{0.0001}$ |  | $\underset{(2,5)}{0.0001} \text { to }$ | $\begin{gathered} -0.0001 \\ (2,5) \end{gathered}$ |
| 20 mm dia., 20 mm lead Preloaded (S222) | $\begin{aligned} & 1,293 \\ & (586) \end{aligned}$ | $\begin{aligned} & 3,505 \\ & (1589) \end{aligned}$ | 90 | $\begin{gathered} 35 \\ (0,24) \end{gathered}$ | $<\underset{(15)}{0.0006}$ | 0 | $+\underset{(2,5)}{0.0001}$ |  | $\underset{(2,5)}{0.0001} \text { to }$ | $\begin{gathered} -0.0001 \\ (2,5) \end{gathered}$ |

## Footnotes:

(1) Dynamic load capacity of screw based on 1 million inches of travel ( 25 Km ).
(2) There is a 0.8 inch $(20,3 \mathrm{~mm})$ reduction of carriage travel (from the listed travel) when using a preloaded nut with this screw option for all the FL E (ROMAT 200-WCO ( 6 inch carriage) model versions. All the 12 inch carriage model numbers and the 200-WC1 series are not affected.
 wree Eax (877) SERV099
www.electromate.com sales@electromate.com

## Screws - Acme \& Ball

| SCREW |  | PRECISION BALL SCREWS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Dyn. }{ }^{(1)} \\ \text { Capacity } \\ \text { Ibs } \\ \text { (kg) } \end{gathered}$ | Static Capacity lbs (kg) | Screw Efficiency \% | $\begin{gathered} \text { Breakaway } \\ \text { Torque } \\ \text { oz-in } \\ (\mathrm{N}-\mathrm{m}) \end{gathered}$ | Position Accuracy inch/ft (microns $/ 300 \mathrm{~mm}$ ) | Backlash <br> inches (microns) | Unidirectional Repeatability inches (microns) | Bidirectional Repeatability inches (microns) |
|  | Non-preloaded <br> (S122) <br> Preloaded <br> (S123) | $\begin{gathered} 964 \\ (437) \\ \\ 867 \\ (393) \end{gathered}$ | $\begin{aligned} & 3,360 \\ & (1524) \\ & 3,025 \\ & (1372) \end{aligned}$ | 90 | $\begin{gathered} 15 \\ (0,11) \\ \\ 25 \\ (0,18) \end{gathered}$ | $<\underset{(50)}{0.002}$ | $<0.003$ <br> (76) $0$ | $+/-0.0002$ <br> (5) | $\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$ |
|  | Non-preloaded <br> (S124) <br> Preloaded <br> (S125) | $\begin{aligned} & 1,070 \\ & (485) \\ & \\ & 960 \\ & (435) \end{aligned}$ | $\begin{aligned} & 3,990 \\ & (1809) \\ & 3,590 \\ & (1628) \end{aligned}$ | 90 | $\begin{gathered} 15 \\ (0,11) \\ \\ 25 \\ (0,18) \end{gathered}$ | $<\underset{(50)}{0.002}$ | $<\underset{(76)}{0.003}$ <br> 0 | $+/-0.0002$ <br> (5) | $\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$ |
|  | Non-preloaded <br> (S128) <br> Preloaded (S129) | $\begin{aligned} & 1,293 \\ & (586) \\ & \\ & 1,160 \\ & (526) \end{aligned}$ | $\begin{aligned} & 3,505 \\ & (1589) \\ & \\ & 3,150 \\ & (1428) \end{aligned}$ | 90 | $\begin{gathered} 25 \\ (0,18) \\ 40 \\ (0,28) \end{gathered}$ | $<\underset{(50)}{0.002}$ | $<\underset{(76)}{0.003}$ <br> 0 | $+/-0.0002$ <br> (5) | $\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0032}{(81)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$ |


|  | SCREW | ROLLED ACME SCREWS |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { Dyn. (1) } \\ \text { Capacity } \\ \text { lbs } \\ (\mathrm{kg}) \end{gathered}$ | Static Capacity lbs (kg) | Screw Efficiency \% | $\begin{gathered} \text { Breakaway } \\ \text { Torque } \\ \text { oz-in } \\ (\mathrm{N}-\mathrm{m}) \end{gathered}$ | Position Accuracy inch/ft (microns $/ 300 \mathrm{~mm}$ ) | Backlash <br> inches (microns) | Unidirectional Repeatability inches (microns) | Bidirectional Repeatability inches (microns) |
|  | Non-preloaded <br> (S306) <br> Preloaded (S307) | $\begin{aligned} & 200 \\ & (91) \\ & \\ & 180 \\ & (82) \end{aligned}$ | $\begin{aligned} & 1,000 \\ & (453) \\ & \\ & 900 \\ & (408) \end{aligned}$ | 40 | $\begin{gathered} 15 \\ (0,11) \\ \\ 30 \\ (0,21) \end{gathered}$ | $<\underset{(75)}{0.003}$ | $\begin{array}{r} 0.008 \\ (203) \end{array}$ <br> 0 | $+/-0.0002$ <br> (5) | $\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0082}{(208)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$ |
|  | Non-preloaded <br> (S308) <br> Preloaded (S309) | $\begin{aligned} & 200 \\ & (91) \\ & \\ & 180 \\ & (82) \end{aligned}$ | $\begin{gathered} 1,000 \\ (453) \\ 900 \\ (408) \end{gathered}$ | 40 | $\begin{gathered} 20 \\ (0,14) \\ 40 \\ (0,28) \end{gathered}$ | $<\underset{(75)}{0.003}$ | $\begin{array}{r} 0.008 \\ (203) \end{array}$ <br> 0 | $+/-0.0002$ <br> (5) | $\begin{aligned} & +\underset{(5)}{0.0002} \text { to }-\frac{0.0082}{(208)} \\ & +\underset{(5)}{0.0002} \text { to }-\underset{(5)}{0.0002} \end{aligned}$ |

## Footnotes:

(1) Dynamic load capacity of screw based on 1 million inches of travel ( 25 Km ).

## Sold \& Serviced By:

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

## Motor Couplings

LINTECH provides three different types of couplings that can be used to mount a motor to a positioning table. These couplings compensate for misalignment between the motor shaft \& screw shaft extension. This provides for trouble-free operation as long as certain precautions are taken. The connected motor output torque should never exceed the coupling maximum torque capacity. Larger capacity couplings may be required for applications having high accelerations, large back driving loads, high torque output motors, or servo motors.


| Model \# | $\mathrm{D}$ <br> inches (mm) |  | Table |  | Diam <br> Min <br> (in) |  | $\begin{aligned} & \text { Max } \\ & \text { (in) } \end{aligned}$ | $\begin{aligned} & \text { imum } \\ & (\mathrm{mm}) \end{aligned}$ | Weight <br> ounces (grams) | Inertia <br> oz-in ${ }^{2}$ <br> ( $\mathrm{g}-\mathrm{cm}^{2}$ ) | Wind-up arc-sec/oz-in (deg/N-m) | Max Torque $\begin{aligned} & \text { oz-in } \\ & (\mathrm{N}-\mathrm{m}) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C125-500-aaa | $\begin{gathered} 1.25 \\ (31,8) \end{gathered}$ | $\begin{aligned} & 2.00 \\ & (50,8) \end{aligned}$ | 500 | aaa | . 250 | 6 | . 500 | 14 | $\begin{aligned} & 3.5 \\ & \text { (99) } \end{aligned}$ | $\begin{gathered} .68 \\ (124) \end{gathered}$ | $\begin{aligned} & 15.0 \\ & (0,59) \end{aligned}$ | $\begin{aligned} & 700 \\ & (4,9) \end{aligned}$ |
| $\text { C150-500-aaa }{ }^{(1)}$ | $\begin{aligned} & 1.50 \\ & (38,1) \end{aligned}$ | $\begin{aligned} & 2.37 \\ & (60,2) \end{aligned}$ | 500 | aaa | . 375 | 10 | . 625 | 16 | $\begin{gathered} 5.5 \\ (156) \end{gathered}$ | $\begin{aligned} & 1.54 \\ & (282) \end{aligned}$ | $\begin{gathered} 13.0 \\ (0,51) \end{gathered}$ | $\begin{aligned} & 950 \\ & (6,7) \end{aligned}$ |
| H131-500-aaa | $\begin{aligned} & 1.31 \\ & (33,3) \end{aligned}$ | $\begin{gathered} 1.89 \\ (48,0) \end{gathered}$ | 500 | aaa | . 250 | 6 | . 625 | 16 | $\begin{aligned} & 2.9 \\ & (82) \end{aligned}$ | $\begin{gathered} .62 \\ (114) \end{gathered}$ | $\begin{gathered} 2.5 \\ (0,098) \end{gathered}$ | $\begin{gathered} 1,000 \\ (7,1) \end{gathered}$ |
| $\text { H163-500-aaa }{ }^{(1)}$ | $\begin{gathered} 1.63 \\ (41,4) \end{gathered}$ | $\begin{aligned} & 2.00 \\ & (50,8) \end{aligned}$ | 500 | aaa | . 375 | 10 | . 750 | 20 | $\begin{gathered} 5.4 \\ (153) \end{gathered}$ | $\begin{aligned} & 1.79 \\ & (328) \end{aligned}$ | $\begin{gathered} 1.2 \\ (0,047) \end{gathered}$ | $\begin{aligned} & 2,000 \\ & (14,1) \end{aligned}$ |
| G126-500-aaa | $\begin{aligned} & 1.26 \\ & (32,1) \end{aligned}$ | $\begin{aligned} & 1.62 \\ & (41,0) \end{aligned}$ | 500 | aaa | . 250 | 6 | . 625 | 16 | $\begin{aligned} & 2.7 \\ & (74) \end{aligned}$ | $\begin{array}{r} .54 \\ \text { (99) } \end{array}$ | $\begin{gathered} 0.3 \\ (0,012) \end{gathered}$ | $\begin{gathered} 1,100 \\ (7,7) \end{gathered}$ |
| $\text { G158-500-aaa }{ }^{(1)}$ | $\begin{gathered} 1.58 \\ (40,2) \end{gathered}$ | $\begin{gathered} 1.85 \\ (47,0) \end{gathered}$ | 500 | aaa | . 375 | 10 | . 750 | 20 | $\begin{gathered} 4.3 \\ (120) \end{gathered}$ | $\begin{aligned} & 1.34 \\ & (245) \end{aligned}$ | $\begin{gathered} 0.2 \\ (0,008) \end{gathered}$ | $\begin{aligned} & 2,400 \\ & (17,0) \end{aligned}$ |
| Possible values for aaa | $\begin{aligned} & 250=.250 \text { inch } \\ & 375=.375 \text { inch } \\ & 500=.500 \text { inch } \\ & 625=.625 \text { inch } \end{aligned}$ |  | $750=.750 \text { inch } \quad \begin{aligned} & 005=5 \mathrm{~mm} \\ & 006=6 \mathrm{~mm} \\ & \\ & \\ & 008=8 \mathrm{~mm} \\ & 010=10 \mathrm{~mm} \end{aligned}$ |  |  |  |  |  | $\begin{array}{ll} 012=12 \mathrm{~mm} & 019=19 \mathrm{~mm} \\ 014=14 \mathrm{~mm} & 020=20 \mathrm{~mm} \\ 016=16 \mathrm{~mm} & \\ 018=18 \mathrm{~mm} & \end{array}$ |  |  |  |

## Footnotes:

(1) This coupling option can not be used with the optional NEMA 23 and NEMA 34 motor mount because its diameter is to large or its length is too long. However, this coupling option can be used with the optional NEMA 42 motor mount. Custom motor mounts can be provided upon request. See page $\mathrm{H}-23$ for maximum coupling diameter and length specifications for use with the optional NEMA $23,34 \& 42$ motor mounts.

## Motor Couplings

| Coupling | Cost | Torque Capacity | Wind-up | Suggested Motor | Comments |
| :---: | :---: | :---: | :---: | :---: | :--- |
| C Type | least expensive | light | the most | stepper | ideal for most step motor applications |
| H Type | medium priced | medium | medium | stepper or servo | use for high accels \& for starting \& stopping large <br> inertia loads |
| G Type | most expensive | high | the least | servo | use for very high torque requirements \& very high <br> servo accelerations |


| Specification | 200 Series <br> NEMA 23 bracket <br> inches <br> $(\mathrm{mm})$ | $\mathbf{2 0 0}$ Series <br> NEMA 34 bracket <br> inches <br> $(\mathrm{mm})$ | 200 Series <br> NEMA 42 bracket <br> inches <br> $(\mathrm{mm})$ |
| :--- | :---: | :---: | :---: |
| Shaft extension diameter at motor mount end | 0.500 <br> $(12,70)$ | 0.500 <br> $(12,70)$ | 0.500 <br> $(12,70)$ |
| Maximum coupling diameter | 1.500 <br> $(38,10)$ | 1.500 <br> $(38,10)$ | 2.000 <br> $(50,80)$ |
| Maximum coupling length | 2.100 | 2.600 |  |

## Coupling Part Numbers

| C056 | C125-500-250 | C165 | H131-500-250 | C445 | G126-500-250 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C057 | C125-500-375 | C166 | H131-500-375 | C446 | G126-500-375 |
| C058 | C125-500-500 | C167 | H131-500-500 | C447 | G126-500-500 |
| C059 | C125-500-006 | C168 | H131-500-625 | C448 | G126-500-625 |
| C060 | C125-500-008 | C169 | H131-500-006 | C449 | G126-500-006 |
| C061 | C125-500-010 | C170 | H131-500-008 | C450 | G126-500-008 |
| C062 | C125-500-012 | C171 | H11-500-010 | C451 | G126-500-010 |
| C063 | C125-500-014 | C172 | H131-500-012 | C452 | G126-500-012 |
|  |  | C173 | H131-500-014 | C453 | G126-500-014 |
| C084 | C150-500-375 | C174 | H131-500-016 | C454 | G126-500-016 |
| C085 | C150-500-500 |  |  |  |  |
| C086 | C150-500-625 | C201 | H163-500-375 | C481 | G158-500-375 |
| C087 | C150-500-010 | C202 | H163-500-500 | C482 | G158-500-500 |
| C088 | C150-500-012 | C203 | H163-500-625 | C483 | G158-500-625 |
| C089 | C150-500-014 | C204 | H163-500-750 | C484 | G158-500-750 |
| C090 | C150-500-016 | C205 | H116-500-010 | C485 | G158-500-010 |
|  |  | C206 | H163-500-012 | C486 | G158-500-012 |
|  |  | C207 | H163-500-014 | C487 | G158-500-014 |
|  |  | C208 | H163-500-016 | C488 | G158-500-016 |
|  |  | C209 | H163-500-018 | C489 | G158-500-018 |
|  |  | C210 | H163-500-019 | C490 | G158-500-019 |
|  | C211 | H163-500-020 | C491 | G158-500-020 |  |

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

The NEMA 34 motor adapter bracket is an aluminum flange that mounts to the front of the NEMA 23 motor mount. The NEMA 42 motor mount is a 3 piece bracket that mounts to the 200 series table. The brackets can be ordered in either an English, or Metric motor mount. LINTECH can provide adapter brackets for any step motor, or servo motor, that has other mounting requirements.


## Hand Crank

For manually operated applications, LINTECH provides a hand crank option for the 200 table series. The hand crank replaces the motor mount and coupling on the table.


## Chrome Plated Linear Bearings, Rails, and Screws

For applications in high moisture, high humidity, clean room, or highly corrossive environments, chrome plating of the linear bearings, linear rails, and screw will offer superior resistance to corrosion than stainless steel components, resulting in rlonger table life. The process uniformly deposits dense, hard, high chromium alloy on the rails or screw, and has a Roclavell Chard-
ness value of $67-72$. This process also conforms to MIL Spec: (MIL-C-23422). The chrome plating bonds to the entmateriaROMAT and will not crack or peel off under the high point loading of balls on the rail, or screw. This chrome plating prodel 5 relifferssifr $(\mathbf{M} \overline{3} 7$ ) SERVO98 a normal hard chrome plate which just lays on the surface of the part plated.

Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

## Motor Wrap Packages

For space limited 200 series applications, a belt and pulley system can couple the screw shaft extension to the motor shaft. This wraps the motor parallel to the table in order to decrease the overall positioning system length. Pulley weights and diameters are given in order to assist in calculating motor torque requirements.


| Motor Wrap <br> Frame Size | Motor Pulley Dia. <br> inches <br> $(\mathrm{mm})$ | Motor Pulley Wt. <br> ounces <br> $(\mathrm{kg})$ | Screw Pulley Dia. <br> inches <br> $(\mathrm{mm})$ | Screw Pulley Wt. <br> ounces <br> $(\mathrm{kg})$ | Belt Weight <br> ounces <br> $(\mathrm{kg})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NEMA 34 | 1.65 <br> $(41,9)$ | 8.0 <br> $(0,23)$ | 1.65 <br> $(41,9)$ | 8.0 <br> $(0,23)$ | 0,2 <br> NEMA 42 |
|  | 2.12 | 19.2 | 2.12 | 19.2 | 3.2 |
| $(53,9)$ | $(0,54)$ | $(53,9)$ | $(0,54)$ | $(0,085)$ |  |

Note: Right hand motor wraps shown. The left hand wrap packages orient the motor to the opposite side of the table. Motor pulley \& belt shipped "loose". No motor mount nuts \& bolts are provided. Custom motor wrap packages are available upon request. Other motor pulley bores MUST be specified for non-NEMA motors.

## Power-off Electric Brakes

For vertical table applications, or for those applications requiring the load to be locked securely in place, an electric brake may be mounted to the positioning table. The 200 series will have the brake mounted to the screw shaft extension located on the table end, opposite the motor mount bracket. With proper wiring from a control system, this power-off friction brake can ensure that the carriage is firmly held in place, when no electric power is applied to the brake. When power is applied to the brake, the brake is opened or "released".

For proper emergency braking of the positioning table, this electric brake needs to be interfaced to a position controller or relay network. LINTECH also provides 24 \& 90 VDC power supplies which can be used to power the brakes.

## Brakes

| Model <br> Number | Holding Force <br> in-lbs <br> $(\mathrm{N}-\mathrm{m})$ | Excitation Voltage <br> volts | Current <br> amps | Weight <br> lbs <br> $(\mathrm{kg})$ |
| :---: | :---: | :---: | :---: | :---: |
| B03 | 84 <br> $(9,5)$ | 24 VDC | 0.973 | 3.3 <br> $(1,50)$ |
| B04 | 84 <br> $(9,5)$ | 90 VDC | 0.239 | 3.3 <br> $(1,50)$ |

Note: This power-off electric brake MUST NOT be engaged when the positioning table is in motion. Moving the table with the brake applied could damage the brake and the positioning table. Also, continuous use of this brake to stop a table (load) that is in motion could damage the brake and the positioning table. Dynamic braking of a positioning table should be done by the motor and not the brake.


## Power Supplies

| Model <br> Number | DC Output |  |  | AC Input |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| volts | amps | style | volts | amps | Hz |  |
| 41970 | 5 | 3.0 | regulated | $120 / 240$ | $0.8 / 0.4$ | $47-63$ |
| 37488 | 24 | 1.2 | regulated | $120 / 240$ | $0.8 / 0.4$ | $47-63$ |
| 37489 | 90 | 0.8 | unregulated | 120 | 1.0 | $50 / 60$ |
| 37490 | 90 | 0.8 | unregulated | 240 | 0.5 | $50 / 60$ |

## Sold \& Serviced By:

Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

## Linear \& Rotary Incremental Encoders

Fully enclosed, incremental, optical linear encoders can be mounted along side any LINTECH 200 series table. Shaftless, incremental, optical rotary encoders can be mounted to the screw shaft extension opposite the motor mount end on the 200 series positioning tables. These encoders provide positional feedback to either a motion controller, or a digital position display.

| LINEAR |  | ROTARY | Description |
| :---: | :---: | :---: | :---: |
| Din Pin \# | Wire Color | Wire Color |  |
| C | Green | White | Channel $\mathrm{A}^{+}$(or A) |
| D | Yellow | Blue | Channel A- (or $\bar{A}$ ) |
| E | Pink | Green | Channel $\mathrm{B}^{+}$(or B) |
| L | Red | Orange | Channel B- (or B) |
| G | Brown | White/Black | Channel Z $^{+}$(or Z) |
| H | Grey | Red/Black | Channel $\mathbf{Z}^{-} \quad$ (or Z) |
| A | Shield |  | Case ground |
| B | White | Black | Common |
| K | Black | Red | + 5 vdc (+/- 5\%) |



| Specification | ROTARY ENCODERS |  |  | LINEAR ENCODERS |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | E01 | E02 | E03 | E10 | E11 |
| Line Count <br> Pre Quadrature Resolution <br> Post Quadrature Resolution <br> Accuracy | 500 lines/rev <br> 0.002 revs/pulse <br> 0.0005 revs/pulse | 1000 lines/rev <br> 0.001 revs/pulse <br> 0,00025 revs/pulse | 1270 lines/rev 0.00079 revs/pulse 0.00019 revs/pulse | 2500 lines/inch 0.0004 inch/pulse 0.0001 inch/pulse +/- $0.0002 \mathrm{in} / 40 "$ | 125 lines $/ \mathrm{mm}$ <br> 8 microns/pulse <br> 2 micron/pulse <br> +/- 5 microns/m |
| Maximum Speed <br> Maximum Accel <br> Excitation Power | $\begin{gathered} 50 \mathrm{revs} / \mathrm{sec}^{2} \\ 40 \mathrm{revs} / \mathrm{sec}^{2} \\ +5 \mathrm{VDC} @ 125 \mathrm{ma} \end{gathered}$ |  |  | 79 inches $/ \mathrm{sec}$ $2 \mathrm{~m} / \mathrm{sec}$ <br> $130 \mathrm{ft} / \mathrm{sec}^{2}$ $40 \mathrm{~m} / \mathrm{sec}^{2}$ <br> +5 VDC @ 150 ma  |  |
| Operating Temperature <br> Humidity <br> Shock <br> Weight | $32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$ $20 \%$ to $80 \%$ non condensing 10 G's for 11 msec duration $0.7 \mathrm{lbs}(0,283 \mathrm{~kg})$ |  |  | $32^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right)$ $20 \%$ to $80 \%$ non condensing <br> 15 G's for 8 msec duration <br> $0.7 \mathrm{oz} / \mathrm{inch}(0,00078 \mathrm{~kg} / \mathrm{mm})$ length of scale $+0.5 \mathrm{lbs}(0,23 \mathrm{~kg})$ read head and brackets |  |
| Cable Length Zero Reference Output | $10 \mathrm{ft}(3 \mathrm{~m})$, unterminated 26 gauge leads Once per revolution |  |  | $10 \mathrm{ft}(3 \mathrm{~m})$ sulth\&Ddidreenderyer At center@coner entiromA |  |
| Outputs |  |  |  |  |  |

