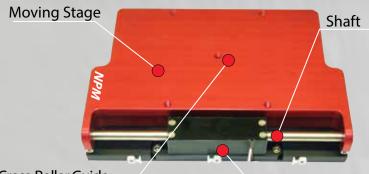
Linear Stage Systems


N I P P O N P U L S E . C O M

Sold & Serviced By: CONCELECTROMATE Toll Free Phone (877) SERV098 Toll Free Fax (877) SERV099 www.electromate.com sales@electromate.com

SCR NANOPOSITIONING SERIES High Precision Single-Axis Linear Stage

The SCR Nanopositioning Series offers the accuracy of piezo driven stages with the speed and performance of servo stages. SCR series stages produce extremely accurate results with no loss in stability, regardless of the complexity of the motion profile. As in all Linear Shaft Motor applications, a non-critical air gap allows for a system that does not have any variation of force generated.

The SCR stage also includes an integrated cross-roller guide. With a simple, lightweight, compact shaft-type linear motor comprised of only a magnet and a coil, large drive force is gained with an efficient and short coil length, allowing for high speed and high precision applications. Because there is no friction, there is no sound or dust, making the motor maintenance-free.

Forcer

Cross-Roller Guide

Four SCR stage models allow for design flexibility in high-precision applications:

SLP

ACCULINE SERIES High Performance Single-Axis Linear Stage

Slider

Coil Unit

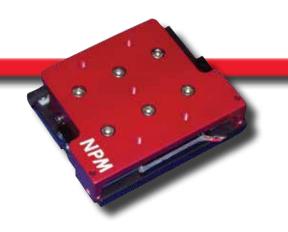
Shaft

nance Single-Axis Linear Stage A high-precision stage for industrial applications, the SLP Acculine Series stage offers superior technology unmatched by

> any other linear stage system. All-inclusive SLP series stages provide integrated shaft support within the housing, simplifying the transition from conventional linear motion systems such as ball-screws and pneumatic actuators. Because it features an integrated, lightweight, compact Linear Shaft Motor, the SLP is a low-profile, high-precision stage. The Linear Shaft Motor is designed for the ultra high-precision market (see page 19 of this booklet for more information).

The SLP series features the smallest deadzone of any stage system available on the market. In addition, no competing stage matches the SLP series' force-to-volume ratio, making it an outstanding solution for projects and applications with space limitations.

There are three SLP models to meet your high-performance needs:


Linear Guide

Linear Encoder

Linear Guide

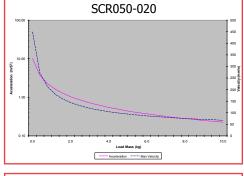
The SCR050 stage utilizes a S040 Linear Shaft Motor, making it a compact, precise solution for small-scale stage applications. The encoder and motor cables are built into the stationary base and are designed so there is no need for them to bend and flex. All SCR stages utilize a moving magnet design. With a built-in optical linear encoder that provides sub-nanometer resolution, the SCR050 is a complete compact stage solution for small-scale precision movement.

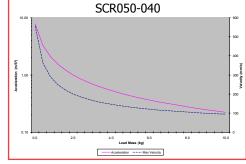
Stage Specifications

Stage Specifications	Units	SCR050-020	SCR050-040
Travel/Stroke	mm	20	40
Accuracy	μm	2	2
Encoder Resolution	nm	1000, 500,	, 100, 50, 10
Bi-Directional Repeatabil- ity ¹		±1 c	count
Maximum Acceleration	m/s ²	10	7
Maximum Velocity ²	m/s	0.4	0.5
Load Capacity ³	kg	10	
Moving Mass	kg	0.229	0.298
Total Mass	g	630	730
Straightness & Flatness	μm	2.5/2	25mm
Index & Limit Sensor		Star	ndard
Limit Switch Over Travel	mm	1	
Hard Stop Over Travel	mm	2	
Bearing		Cross-rol	ler Bearing
Linear Shaft Motor		SO	40Q

¹Repeatability +/- 2 counts at sub 0.1 µm resolutions

² For 10nm (0.01µm) resolution, max velocity of encoder is limited to 135mm/ sec; for 50nm (0.05µm), the limit is 675mm/sec; and for 100nm (0.1 μ m), the limit is 1350mm/sec

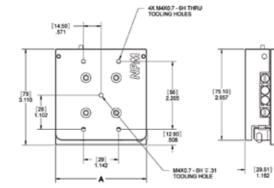

³ Please contact our Applications Engineers for loads exceeding 10kg

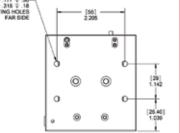

Motor Cable UL1440

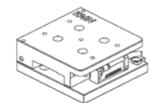
Length: 300mm (0.3m) Encoder Cable Length: min. 1000mm

AWG 28 U–red V-white W-black

Acceleration/Velocity Curves




Linear Shaft Motor Specifications


Motor Specifications	S040Q (Units)
Fund. Motor Constant	0.41N/√W
Motor Force Constant	2.1N/Arms
Back-EMF Constant	0.7V/m/s
Coil Resistance @ 25°C	22.4Ω
Coil Inductance	1mH
Cont. Current @ 135°C	0.3Arms
Acceleration Current	1.1Arms
Cont. Force @ 135°C	0.58N
Acceleration Force	2.3N
Cont. Power Rating	2.016W
Thermal Resistance Sol	d & Serv 62d6ÿC/W
(C ELECTRON

Dimensions

NIPPONPULSE.COM sales@electromate.com

RV098

V099

hm

SCR075

The SCR075 stage is a complete single-axis stage with an integrated slide guide, encoder and Linear Shaft Motor. It offers a wide range of advantages for applications requiring high performance and accuracy. The Linear Shaft Motor allows for higher resolution, speed, and continuous force than standard stepper or piezo servomotors.

The SCR075 uses a standard S080Q Linear Shaft Motor; however, the coil windings are customizable to a double or triple winding. The SCR075 features a moving magnet design, a precision ground cross roller, and a built-in encoder.

Stage Specifications

Stage Specifications ¹	Units	SCR075-050	SCR075-100	SCR075-150
Travel/Stroke	mm	50	100	150
Stage Width (B)	mm	140	190	240
Accuracy	μm	3	5	7
Encoder Resolution	nm	10	000, 500, 100, 50,	10
Bi-Directional Repeatability ²			±1 count	
Maximum Acceleration	m/s²	28	20	15
Maximum Velocity ³	m/s	1.1	1.4	1.5
Load Capacity ⁴	kg		45.5	
Moving Mass	kg	0.493	0.669	0.881
Total Mass	kg	1	1.3	1.7
Straightness & Flatness	μm		2.5/25mm	
Index & Limit Sensor			Standard	
Limit Switch Over Travel	mm	1		
Hard Stop Over Travel	mm	2		
Bearing		Cross-roller Bearing		
Linear Shaft Motor			S080Q	

¹ Standard stage specifications are based on the S080Q Linear Shaft Motor

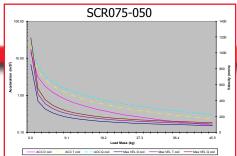
²Repeatability +/- 2 counts at sub 0.1µm resolutions

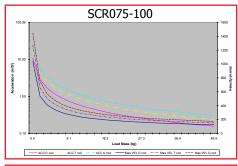
 3 For 10nm (0.01µm) resolution, max velocity of encoder is limited to 135mm/sec; for 50nm (0.05µm), the limit is 675mm/sec; and for 100nm (0.1µm), the limit is 1350mm/sec

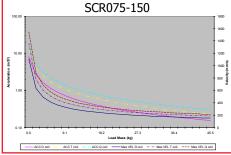
⁴Please contact our Applications Engineers for loads exceeding 45.5kg

Note: All Nippon Pulse SCR and SLP stages require a servo driver to operate the stage. Two SCR stages will bolt directly together to form a very stiff, compact X-Y assembly, without the need for adaptor plates (provided they are part of the same series). Two SCR stages can be supplied as an X-Y stage to ensure true orthogonal orientation between the two axes.

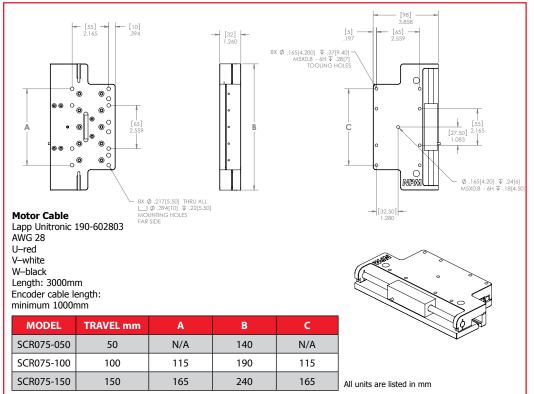
Constant Con


Acceleration/Velocity Curves




Linear Shaft Motor Specifications

Linear Shaft Motor Force Specifications	Units	5080Q
Fundamental Motor Constant	N/W	1.46
Motor Force Constant (Kf)	N/A rms	4.2
Back-EMF Constant	V/m/s	1.4
Coil Resistance @ 25°C	Ω	9.0
Coil Inductance	mH	1.3
Continuous Current @ 135°C	А	0.8
Acceleration Current	А	3.4
Continuous Force @ 135°C	N	3.5
Acceleration Force	N	14
Continuous Power Rating	W	5.76
Thermal Resistance	°C/W	17.3


Note: Curves apply only to the stage's standard Linear Shaft Motor, the S080Q. Please contact our application engineers to learn more about using S080D or S080T coils in your stage.

Dimensions

Sold & Serviced By: ELECTROMATE Toll Free Phone (877) SERV098 NIPPONPULSE.COM0 For 875 SERV099 MIPPONPULSE.COM0 For 875 SERV099

sales@electromate.com

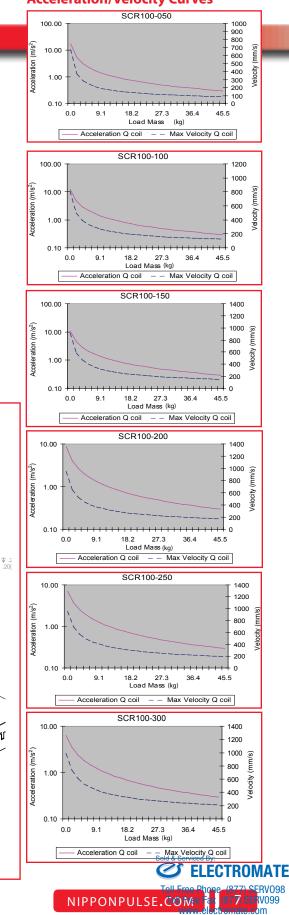
Your Partner In Motion Control

Like its relatives, the SCR100 integrates a slide guide, encoder and a Linear Shaft Motor. A wide range of options allows for a better match for stage applications that require sub-nanometer resolution that is free from motion errors. Like the SCR050 and SCR075, the encoder and motor cables are built into the stationary base and are designed so there is no need for them to bend and flex.

Specifications ¹	Units	SCR100-050	SCR100-100	SCR100-150	SCR100-200	SCR100-250	SCR100-300
Travel/Stroke	mm	50	100	150	200	250	300
Stage Width (B)	mm	140	190	240	290	340	390
Accuracy	μm	3	5	7	9	11	12
Encoder Resolution	nm			1000, 500,	100, 50, 10		
Bi-Directional Repeatability ²				±1 c	ount		
Maximum Acceleration	m/s ²	17	12	10	8	7	6
Maximum Velocity ³	m/s	0.9	1	1.2	1.2	1.3	1.3
Load Capacity ⁴	kg	45.5					
Moving Mass	kg	0.8	1.1	1.3	1.6	2.0	2.2
Total Mass	kg	1.6	2.1	2.6	3.2	3.9	4.5
Straightness & Flatness	μm			2/25	imm		
Index & Limit Sensor				Stan	dard		
Limit Switch Over Travel	mm	1					
Hard Stop Over Travel	mm	2					
Bearing		Cross-roller bearing					
Linear Shaft Motor				SO	30Q		

¹ Standard stage specifications are based on the S080Q Linear Shaft Motor

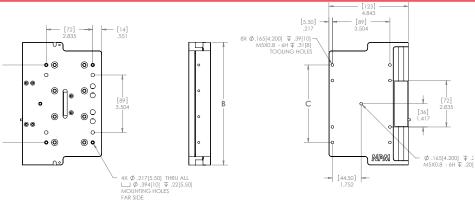
 2 Repeatability +/- 2 counts at sub 0.1 μm resolutions


 3 For 10nm (0.01 μm) resolution, max velocity of encoder is limited to 135 mm/sec; for 50 nm (0.05 μm),

the limit is 675mm/sec; and for 100nm (0.1 μm), the limit is 1350mm/sec

⁴Please contact our applications engineers for loads exceeding 45.5kg

Acceleration/Velocity Curves



Linear Shaft Motor Specifications

Linear Shaft Motor Force Specifications	Units	S080Q
Fundamental Motor Constant	N/W	1.39
Motor Force Constant (Kf)	N/A rms	4.2
Back-EMF Constant	V/m/s	1.4
Coil Resistance @ 25°C	Ω	9
Coil Inductance	mH	1.3
Continuous Current @ 135°C	А	0.84
Acceleration Current	A	3.4
Continuous Force @ 135°C	N	3.5
Acceleration Force	N	14
Continuous Power Rating	W	12.7
Thermal Resistance	°C/W	17.3

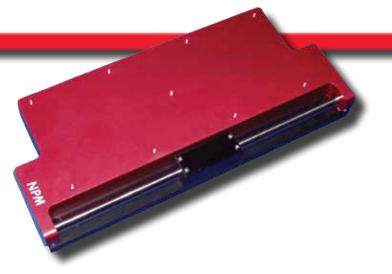
Note: Curves apply only to the stage's standard motor, the S080Q. Please contact our application engineers to learn more about using S080D or S080T coils in your stage.

Dimensions

Motor Cable Lapp Unitronic 190-602803 AWG 28 U-red V-white W-black Length: 3000mm Encoder cable length: minimum 1000mm

TRAVEL mmlini

MODEL	TRAVEL mm	А	В	С
SCR100-050	50	N/A	140	N/A
SCR100-100	100	120	190	120
SCR100-150	150	160	240	160
SCR100-200	200	200	290	200
SCR100-250	250	260	340	260
SCR100-300	300	300	390	300


Your Partner In Motion Control

All units are listed in mm

sales@electromate.com

The largest of the SCR stages, the SCR150 stage has stroke lengths up to 300mm while maintaining the high performance and accuracy of the smaller SCR stages. Like the other three stages, the SCR150 is a complete single-axis stage with an integrated slide guide, encoder and a Linear Shaft Motor. It offers a wide range of advantages for applications requiring high performance and accuracy.

Stage Specifications

Specifications ¹	Units	SCR150-100	SCR150-150	SCR150-200	SCR150-250	SCR150-300
Travel/Stroke ²	mm	100	150	200	250	300
Stage Width (B)	mm	230	280	330	380	430
Stroke	mm	100	150	200	250	300
Accuracy	μm	5	7	9	11	12
Encoder Resolution	nm			1000, 500, 100, 50, 10		
Bi-Directional Repeatability ³		±1 count				
Maximum Acceleration	m/s ²	17	13	11	9	8
Maximum Velocity ⁴	m/s	1.3	1.3	1.4	1.5	1.5
Load Capacity⁵	kg			45.5		
Moving Mass	kg	2.3	2.9	3.5	4.1	4.7
Total Mass	kg	5.2	6.5	7.9	9.2	10.6
Straightness & Flatness	μm			2/25mm		
Home & Limit Sensor		Standard				
Limit Switch Over Travel	mm	1				
Hard Stop Over Travel	mm	2				
Bearing		Cross-roller bearing				
Linear Shaft Motor				\$160D		

¹ Standard stage specifications based on the S160D Linear Shaft Motor

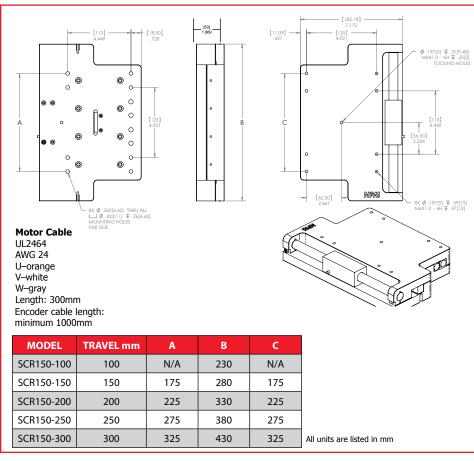
²Travel/Stroke with S160D coil; when using S160T, stroke is 30mm shorter; when using

S160Q, stroke is 60mm shorter

³Repeatability +/- 2 counts sub 0.1µm resolutions

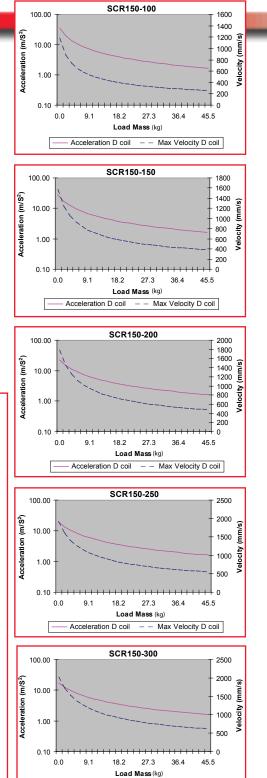
 4 For 10nm (0.01µm) resolution, max velocity of encoder is limited to 135mm/sec; for 50nm (0.05µm), the limit is 675mm/sec; for 100nm (0.1µm), the limit is 1350mm/sec

⁵Please contact our applications engineers for loads exceeding 45.5kg


SCR150

Linear Shaft Motor Specifications

Linear Shaft Motor Force Specifications	Units	S160D
Fundamental Motor Constant	N/W	3.51
Motor Force Constant (Kf)	N/A rms	16
Back-EMF Constant	V/m/s	5.4
Coil Resistance @ 25°C	Ω	21
Coil Inductance	mH	8.2
Continuous Current @ 135°C	А	0.6
Acceleration Current	А	2.5
Continuous Force @ 135°C	N	10
Acceleration Force	Ν	40
Continuous Power Rating	W	16.1
Thermal Resistance	°C/W	33.2


Note: Curves apply only to the stage's standard motor, the S160D Linear Shaft Motor. Please contact our application engineers to learn more about using S160T or S160Q coils in your stage.

Dimensions

Your Partner In Motion Control

Acceleration/Velocity Curves

Sold & Serviced By: ELECTROMATE Toll Free Phone (877) SERV098 NIPPONPULSE.COM In Fail (879 SE V099 Www.electromate.com sales@electromate.com

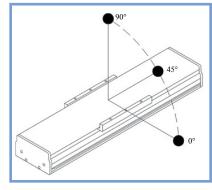
Max Velocity D coil

Acceleration D coil

SLP Stages

- High Thrust, High Speed, High Responsiveness, High Precision, Long Stroke
- Simple Design and Easy Installation
- Non-Contact Drive means Low Noise, Long Lifespan, and Maintenance-Free

Stage Specifications

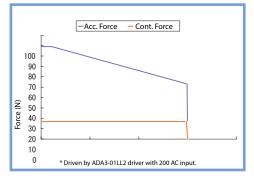

Rated Spec	Unit	Specification
Encoder Resolution	μm	1 (HEIDENHAIN LIDA279)
Continuous Force	N	17
Acceleration Force ¹	N	90
Continuous Current ²	А	0.51
Acceleration Current ¹	А	2.7
Force Constant (Kf)	N/A rms	33
Back-EMF Constant	V/m/s	11
Resistance ³	ohm	56
Inductance ³	mH	24
Magnetic Pitch (N-N)	mm	60
Maximum Acceleration ⁴	G	3.5
Maximum Velocity ^{4, 5}	m/s	3.0
Bi-Directional Repeat- ability	mm	±0.0005
Max Load, Horizontal	kg	5.0
Load Capacity	kg	3.0
Stroke, Single Forcer ⁶	mm	100~2000 (100 interval)
Stroke, Double Forcer ⁶	mm	100~1800 (100 interval)
Operating Temperature	°C	0~+40
Operating Humidity	%	20~80 (no condensation)
Storage Temperature	°C	-20~+60
Moving Mass	kg	0.5

¹ Acceleration Force given is based on the output with the use of the SLP15 driver ([14] Hitachi Production Machine System ADA3-01LL2)

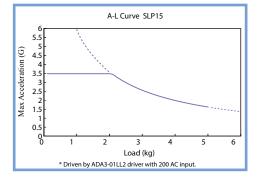
²The effective amperage when the temperature increase of the coil front becomes 110K

³ An average value of U-V, U-W, and V-W

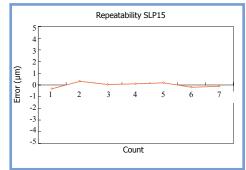
Overhanging Weight Tolerance (in mm)



	Load	0 °	45°	90°
	1kg	380	400	450
ntal	2kg	220	250	270
Horizontal	3kg	160	190	200
Ч	4kg	120	140	150
	5kg	100	110	130
	1kg	440	390	320
Wall	2kg	260	230	180
	3kg	180	170	120


⁵There are instances when this is not achieved due to the

⁶Contact Nippon Pulse for longer stroke lengths

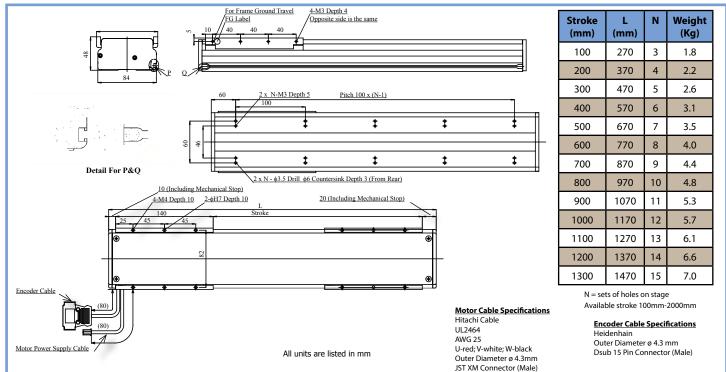

F-V Curve

Max. Acceleration vs. Load

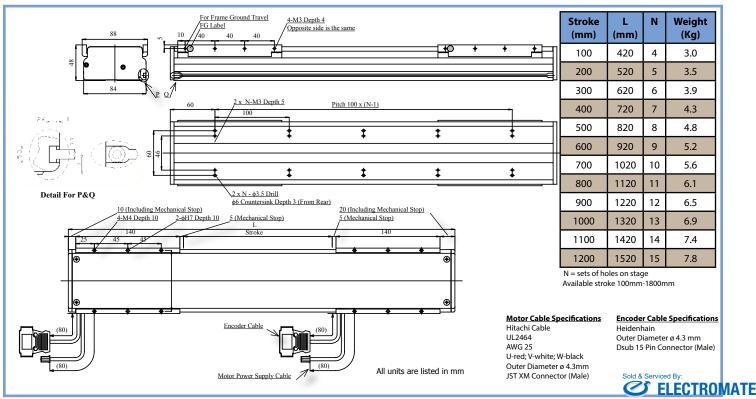
Position Repeatability

NIPPONPULSE.COM

Nippon Pulse


or operation specifications

length of the stroke


10

Single Slider Dimensions

Double Slider Dimensions

Your Partner In Motion Control

NIPPONPULSE.COMe (877) SE sales@electromate.com

SERV098

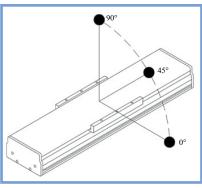
RV099

om

SLP Stages

- High Thrust, High Speed, High Responsiveness, High Precision, Long Stroke
- Simple Design and Easy Installation
- Non-Contact Drive means Low Noise, Long Lifespan, and Maintenance-Free

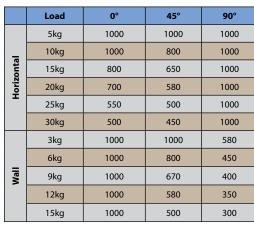
Stage Specifications

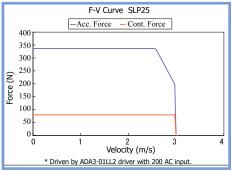

Rated Spec	Unit	Specification
Encoder Resolution	μm	1 (HEIDENHAIN LIDA279)
Continuous Force	N	80
Acceleration Force ¹	N	340
Continuous Current ²	А	1.2
Acceleration Current ¹	А	5.1
Force Constant (Kf)	N/A rms	66
Back-EMF Constant	V/m/s	22
Resistance ³	ohm	22
Inductance ³	mH	31
Magnetic Pitch (N-N)	mm	90
Maximum Acceleration ⁴	G	3.5
Maximum Velocity ^{4, 5}	m/s	3.0
Bi-Directional Repeat- ability	mm	±0.0005
Max Load, Horizontal	kg	30
Load Capacity	kg	15
Stroke, Single Forcer ⁶	mm	200-2000 (100 interval)
Stroke, Double Forcer ⁶	mm	200-1800 (100 interval)
Operating Temperature	°C	0~+40
Operating Humidity	%	20~80 (no condensation)
Storage Temperature	°C	-20~+60
Moving Mass	kg	2.7

¹Acceleration Force given is based on the output with the use of the SLP25 driver ([14] Hitachi Production Machine System ADA3-01LL2)

²The effective amperage when the temperature increase of the coil front becomes 110K

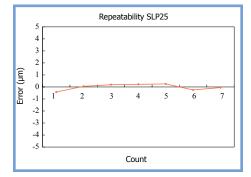
 $^{\scriptscriptstyle 3}$ An average value of U-V, U-W, and V-W


Overhanging Weight Tolerance (in mm)

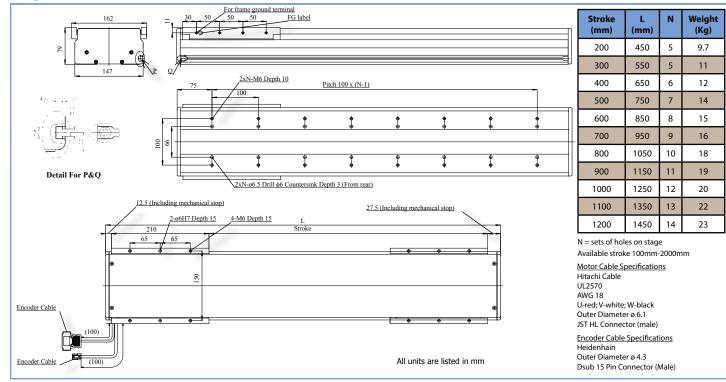

⁴There are instances when this is not achieved due to load or operation specifications

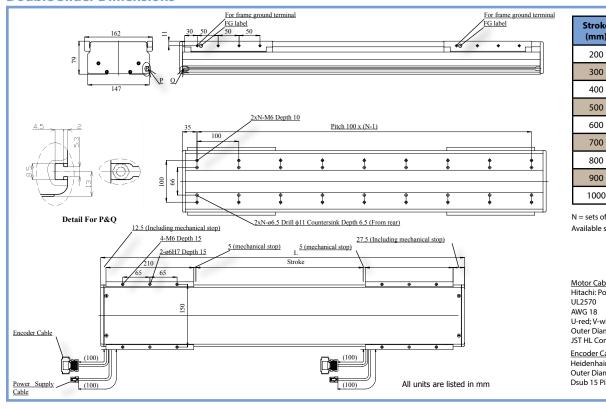
⁵There are instances when this is not achieved due to the length of the stroke

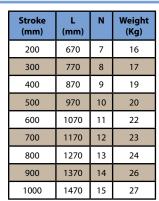

⁶Contact Nippon Pulse for longer stroke lengths


F-V Curve

Max. Acceleration vs. Load


Position Repeatability





Single Slider Dimensions

Double Slider Dimensions

N = sets of holes on stage Available stroke 100mm-1800mm

Motor Cable Specifications Hitachi: Power Supply Co. U12570 AWG 18 U-red; V-white; W-black Outer Diameter Ø 6.1 JST HL Connector (male) Encoder Cable Specifications Heidenhain Outer Diameter Ø 4.3 Dsub 15 Pin Connector Galagid By: DSUB 15 Pin Connector Galagid By:

NIPPONPULSE.COMP

(877) SERV098

om

87773SERV099

sales@electromate.com

Your Partner In Motion Control

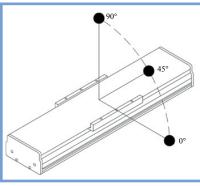
SLP Stages

SLP35

- High Thrust, High Speed, High Responsiveness, High Precision, Long Stroke
- Simple Design and Easy Installation
- Non-Contact Drive means Low Noise, Long Lifespan, and Maintenance-Free

Stage Specifications

Rated Spec	Unit	Specification	
Encoder Resolution	μm	1 (HEIDENHAIN LIDA279)	
Continuous Force	N	185	
Acceleration Force ¹	N	970	
Continuous Current ²	А	2.7	
Acceleration Current ¹	А	14.4	
Force Constant (Kf)	N/A rms	68	
Back-EMF Constant	V/m/s	22	
Resistance ³	ohm	7.2	
Inductance ³	mH	12	
Magnetic Pitch (N-N)	mm	120	
Maximum Acceleration ⁴	G	3.5	
Maximum Velocity ^{4, 5}	m/s	3.0	
Bi-Directional Repeat- ability	mm	±0.0005	
Max Load, Horizontal	kg	60	
Load Capacity	kg	30	
Stroke, Single Forcer ⁶	mm	300-2000 (100 interval)	
Stroke, Double Forcer ⁶	mm	300-1700 (100 interval)	
Operating Temperature	°C	0~+40	
Operating Humidity	%	20~80 (no condensation)	
Storage Temperature	°C	-20~+60	
Moving Mass	kg	4.4	


 $^{\rm 1}$ Acceleration Force given is based on the output with the use of the SLP35 driver

([14] Hitachi Production Machine System ADA3-01LL2) ²The effective amperage when the temperature increase

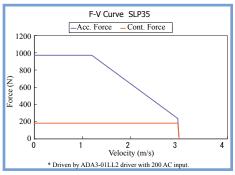
of the coil front becomes 110K.

 $^{\scriptscriptstyle 3}$ An average value of U-V, U-W, and V-W.

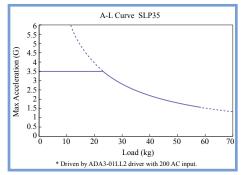
Overhanging Weight Tolerance (in mm)

	Load	0°	45°	90°
	10kg	1000	1000	1000
_	20kg	1000	900	1000
onta	30kg	940	780	1000
Horizontal	40kg	840	660	1000
-	50kg	750	590	950
	60kg	680	540	900
	5kg	1000	1000	700
	10kg	1000	900	600
Wall	15kg	1000	810	520
ŝ	20kg	1000	710	430
	25kg	980	620	350
	30kg	890	530	300

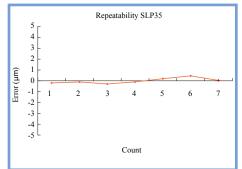
⁴There are instances when this is not achieved due to load


⁵There are instances when this is not achieved due to the

⁶Contact Nippon Pulse for longer stroke lengths.

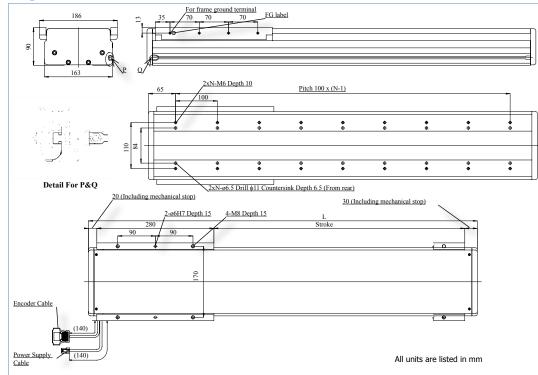

or operation specifications.

length of the stroke.


F-V Curve

Max. Acceleration vs. Load

Position Repeatability



Nippon Pulse

LP35

Single Slider Dimensions

Stroke (mm)	L (mm)	N	Weight (Kg)
300	630	6	17
400	730	7	30
500	830	8	21
600	930	9	23
700	1030	10	25
800	1130	11	26
900	1230	12	28
1000	1330	13	30
1100	1430	14	32
1200	1530	15	34

N = sets of holes on stage Available stroke 100mm-2000mm

Motor Cable Specifications

Hitachi Cable UL2570 AWG 18 U-red; V-white; W-black Outer Diameter ø 6.1 JST HL Connector (male)

Encoder Cable Specifications

Heidenhain Outer Diameter ø 4.3 Dsub 15 Pin Connector (Male)

Weight

(Kg)

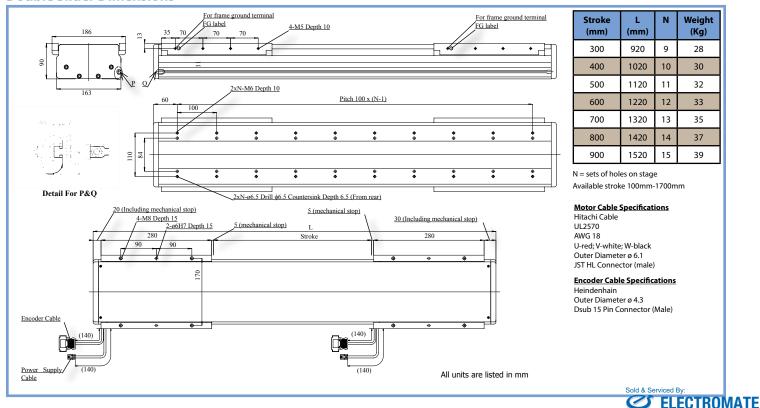
28

30

32

33

35

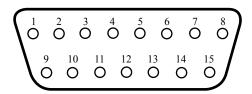

37

39

77) SERV098

om

Double Slider Dimensions



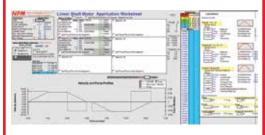
Your Partner In Motion Control

NIPPONPULSE.COM (87775SERV099 sales@electromate.com

SCR Standard Pinout

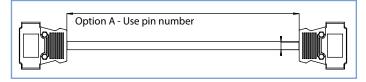
Pin	Signal	Function
2	0V	Ground
4	Z-	Reference Mark
5	B-	Incremental Signal
6	A-	Incremental Signal
7	5V	Power
8	5V	Power
9	0V	Ground
10	Q	Limit
11	Р	Limit
12	Z+	Reference Mark
13	B+	Incremental Signal
14	A+	Incremental Signal
15	shield	

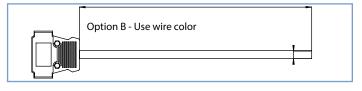
SLP Pinout


Pin	Signal	Wire Color	Function
1	A+	White	Incremental Signal
2	0V	Black/Red	Ground
3	B+	Green	Incremental Signal
4	5V	Red	Power
7	Z-	Black/Yellow	Reference Mark
9	A-	Black/White	Incremental Signal
11	B-	Black/Green	Incremental Signal
14	Z+	Yellow	Reference Mark

Nippon Pulse SMART

Nippon Pulse provides the Linear Shaft Motor Application Resource Tool (SMART) sizing resource for your convenience. You must be running Microsoft Excel 98 or a later version.


SMART is available at


nipponpulse.com/support/manuals

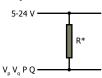
(Requires Microsoft Excel 98 or newer.)

SLP Cable Options

SUBSTRATE CONVEYANCE DEVICE

- By placing the lower shafts in a parallel position, it is possible to place the work in the central space. The shaft motors
- can be driven with one driver or in parallel motion.

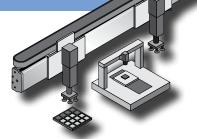
Orthogonal Jig Plate for use with SLP X-Y table


When constructing a multiple-axis table that utilizes several SLP series stages, installation is exceptionally easy with the placement of the jig plate between the axes. It is possible to easily gain orthogonal precision between the lower axis and the upper axis by positioning the two attached positioning pins to the precision holes on the face of the stage's slider installation. (Because there is a limit to the possible combinations for certain models, please use the models suitable for multiple axes.) Z-axis jig plates are also available for three-dimensional motion. Jig plates are not needed for SCR stage multi-axis arrangements.

- Jig Plate A Lower axis SLP 15, Upper axis SLP 15
- Jig Plate B Lower axis SLP25/35, Upper axis SLP 15/25/35
- Z-axis Jig Plate Z-axis SLP15, X-axis SLP25

Note: Limits-open collector output, asynchronous pulse

Limit Outputs



*select R for I max <20 mA Alternatively, use a suitable relay or opto-isolator

Application Examples

LOADER/UNLOADER

- Multiple sliders move independently with accuracy.
- Multi-sliders save space and cut costs.

STANDARD X-Y ARRANGEMENT

Due to the many ways the high-speed SLP15, SLP25 and SLP35 can be used together, a wide range of movement is possible.

SCR X-Y ARRANGEMENT

Each SCR and SLP stage requires a servo driver to operate the stage. Any two SCR stages will bolt directly together to form a very stiff, compact X-Y assembly, without the need for adaptor plates (provided they are in the same series).

Sold & Serviced By

NIPPONPULSE.COMe

C ELECTROMATE

sales@electromate.com

l-ax elect

(87**177**SE

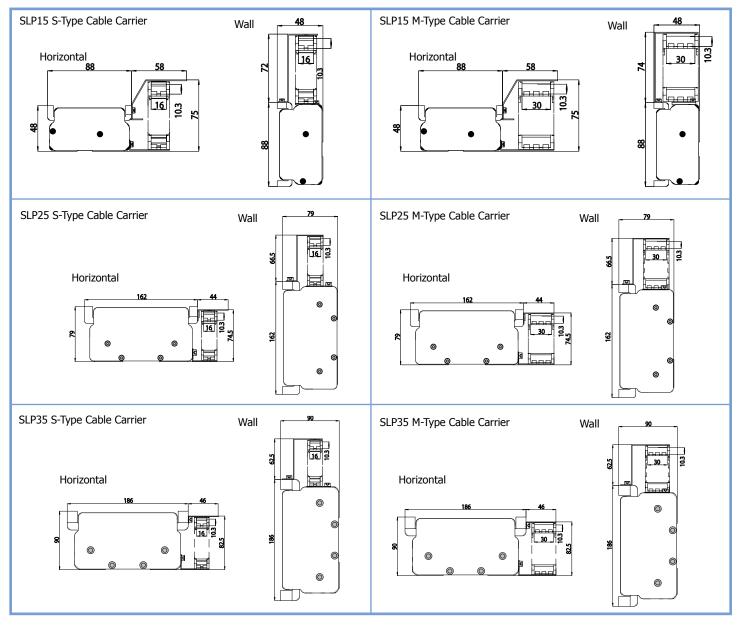
RV098

RV099

om

SCR Stage Part Numbering Guide	Example model number: SCR100-50-010-080Q
Scr 050 XXX XXX XXX 075 1 100 1 150 1 150 1 100 1 150 1 100 1 150 1 100 1 150 1 100 100 100 100 100 100 100 100 100 100	Motor Size Hall Effects XX XX Blank = No Hall Effects HA = Hall Effects XXD = Motor Size with double winding XXT = Motor Size with triple winding XXQ = Motor Size with quadruple winding 100 = 1000nm 050 = 500nm 010= 100nm 005 = 50nm 001 = 10nm 50mm (1.97 in) 200mm (7.88 in) 100mm (3.94 in) 250mm (9.85 in) 150mm (5.91 in) 300mm (11.82 in) XX Stage Width in mm Stage Main Body Model

*SCR Encoder Upgrade Notice


As of September 1, 2010, all Nippon Pulse SCR Nanopositioning stages are available with a upgraded encoder. Any stage built after Sept. 1, 2010, and beginning with unit SN#080210-001, comes standard with the Renishaw Tonic Encoder.

The previous encoder was the Renishaw RGH24, which used optional and separate read switch end-of-travel limits. The Tonic Encoder includes limit switches as a part of the new read head and makes end limits standard at no additional cost. This change optimizes performance and eliminates extra wiring needed with the optional limit switches. Other benefits of using the new encoder include improving interpolation feedback by four times, achieving 5nm resolution without the use of a large RGB interpolator, and increased resolution and speed options.

SLP Stage Part Numbering Guide Example model number: SLP15-20 Frame Motor Encoder Cable Size Stroke Slide Cable* Cable* Carrier Jig Plate* Blank = No Orthogonal Jig Plate	
SLP 15 XXXX X XX XX XX XX XYPA = Orthogonal Jig Plate A 25 35 35 Image: Supervision of the supervision of	n ordering a jig
Blank = No Cable Carrier SH = S-Type Horizontal Mount SW = S-Type Wall Mount MH = M-Type Horizontal Mount MW = M-Type Wall Mount	
A1: Double-end D-sub 1m A3: Double-end D-sub 3m A6: Double-end D-sub 6m A9: Double-end D-sub 9m B1: Single-end D-sub 1m B3: Single-end D-sub 3m B6: Single-end D-sub 6m B9: Single-end D-sub 6m	
M1: 1m motor cable M3: 3m motor cable M6: 6m motor cable M9: 9m motor cable	
S = 1 slide D = 2 slides	
Stroke Length (mm) 100 - 2000 (100mm increments)
15, 25, 35 = Frame Size	
Stage Main Body Model	

*Motor cables, encoder cables, and jig plates can be ordered separately. When ordering, add 'SL-' in front of the part number. Example: SL-A9 for a single-end D-sub 9m encoder cable or SL-XYPA for an orthogonal jig plate A.

SLP Cable Carrier Dimensions

Custom Stages

In addition to the two standard stage series, Nippon Pulse has the ability to build custom stages to fit your applications. Please contact Nippon Pulse to speak to a local representative for more information and pricing of a custom stage unit.

To provide better support, a custom stage worksheet is available on our web site. Complete the form and return it to Nippon Pulse to make custom staging more efficient.

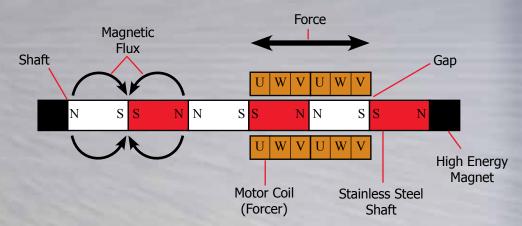
nipponpulse.com/support/custom-worksheets

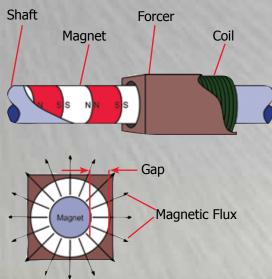
Linear Shaft Motor

The Next Generation In Linear Motion

What is a Linear Shaft Motor?

Nippon Pulse's Linear Shaft Motor is the first linear motor designed and built for the ultrahigh-precision market. The design of the Linear Shaft Motor maximizes use of magnetic flux, provides stiffness 100 times greater than that of other coreless linear motors, and minimizes heat production and the impact of generated heat, allowing it to complete movements with sub-micron resolutions.


The Linear Shaft Motor is a simple design, made of only two parts: a shaft and forcer. Because of its simple design, the Linear Shaft Motor is far more efficient than competing linear motors, using 50 percent less power than U-shaped motors. This is in large part because all magnetic flux created by the coils cuts the magnetic shaft at 90 degrees.


The Linear Shaft Motor is also designed to reduce the amount of heat that is dumped into the work surface, further maximizing the motor's efficiency. The Linear Shaft Motor is the only linear motor on the market that does not use an added heat sink while evaluating and documenting motor ratings.

Unlike platen linear motors, the Linear Shaft Motor does not produce Eddy currents and, because it is an ironless design, has no cogging. Unlike U-shaped linear motors, the Linear Shaft Motor does not have inherent air flow restrictions, which lead to increased heat production.

Basic Structure of a Linear Shaft Motor

The magnetic structure of the shaft is built in such a manner that there is no space between each magnet. The magnet structure is fully supported within itself. The magnetic structure is then inserted into a protective stainless steel tube. (This process is protected by numerous patents.) The process used to construct the Linear Shaft Motor produces a very strong magnetic field, twice that of other linear motors.

Forcer Construction

The coils of the Linear Shaft Motor are of a cylindrical design, providing a number of key advantages over other linear motors.

- The cylindrical design makes coil assembly very stiff without the use of external stiffening materials, such as the iron used by platen style-linear motors.
- The coils surround the magnets, allowing for the optimal use of all the magnetic flux. This makes the air gap (0.5~5.0mm) non-critical. (As long as the forcer does not come in contact with the shaft there is no variation in the linear force.)
- The magnetic flux cuts motor windings at right angles for maximum efficiency.
- All sides of the coil are positioned to allow for maximum dissipation of heat.
- The Linear Shaft Motor requires less current and less mass, to produce a similar force, and is more efficient than any other linear motor on the market.

The Nippon Pulse Advantage

For more than 60 years, Nippon Pulse has built state-of-of-the-art products based on a solid foundation of advancing technology and thorough product research.

Nippon Pulse faithfully provides these high-quality products to a wide range of industries in North and South America and Europe. We have established ourselves as a leader in stepper motor, driver and controller technology while introducing innovative products, such as the Linear Shaft Motor. At Nippon Pulse, we believe that by bringing products to market that meet the customers' requirements and exceed expectations, we contribute to the progression of technology and its positive impact on our society.

We have representatives throughout North and South America and Europe to assist customers directly. Limited quantities of stock on standard motors and electronics are available to allow faster response to customer needs. In addition, Nippon Pulse has a model shop in its North American headquarters for quick turnaround on custom prototypes and special orders. Our mission is to faithfully create the new products sought by our customers and to contribute to the development of society from a global viewpoint.

When you choose a Nippon Pulse motor, driver, controller, network or stage, you're doing more than just buying a quality product: you're benefitting from what we call the Nippon Pulse Advantage. This includes superior prototyping, complete system engineering, proper compliance and certification according to international guidelines, exceptional tailoring to your needs, and unmatched support.

A wholly owned subsidiary of Nippon Pulse Motor Co., Ltd., Nippon Pulse America is headquartered in Radford, Va.

4 Corporate Drive Radford, Va. 24141 USA Tel: 1-540-633-1677 • Fax: 1-540-633-1674 nipponpulse.com • info@nipponpulse.com

Nippon Pulse Representative Information

