

Direct Drive Linear Motor

Selection Guide

KOLLMORGEN

Because Motion Matters™

Kollmorgen: Your partner. In Motion.

Every solution comes from a real understanding of the challenges facing machine designers and users.

Innovators consistently rate Kollmorgen as one of their best motion systems manufacturing partners. Whether you are looking for classic servo motors, direct-drive servo motors, stepper motors, drives & amplifiers, gearing, actuation, or CNC & multi-axis motion controllers, Kollmorgen is one of the few companies in the world who actually designs and manufactures all of these products.

Our customers are leaders in many industries such as Aerospace & Defense, Printing, Packaging & Converting, Food & Beverage Processing, Medical Imaging, In Vitro Diagnostics & Laboratory Automation, Pharmaceutical Manufacturing, Material Forming and Cutting, Oil & Gas, and Robotics. Kollmorgen is also a leader in Warehouse Automation, including complete AGV systems, software, awareness and autonomy.

Our Automation Solutions can be found on Mars and in space, ships and submarines, O&G drilling and metrology, surgical robots and laser eye surgery, even inside artificial hearts. These are just a few applications that demand high-performance and high-quality while satisfying their specific needs.

Because motion matters, it's our focus: Motion can distinctly differentiate a machine and deliver a marketplace advantage by increasing its performance and dramatically improving overall equipment effectiveness (OEE).

High-performance motion can make your customer's machine more reliable and energy-efficient, enhance accuracy and improve operator safety. Motion also represents endless possibilities for innovation.

We've always understood this potential, and thus have kept motion at our core and in our Vison, Mission & Values, relentlessly developing products that offer precise control of torque, velocity and position accuracy in machines that rely on complex motion.

Removing the Barriers of Design, Sourcing, and Time

At Kollmorgen, we know that OEM engineers can achieve a lot more when obstacles aren't in the way. So, we clear obstacles in three important ways:

Integrating Standard and Custom Products

The optimal solution is often not clear-cut. Our application expertise allows us to modify standard products or develop totally custom solutions across our whole product portfolio so that designs can take flight.

Providing Motion Solutions, Not Just Components

As companies reduce their supplier base and have less engineering manpower, they need a total system supplier with a wide range of integrated solutions. Kollmorgen offers complete solutions as well as motion subsystems that combine programming software, engineering services and best-in-class motion components.

Global Footprint

With direct sales, engineering support, manufacturing facilities, and distributors spanning the Americas, Europe, Middle East, and Asia, we're close to OEMs worldwide. Our proximity helps speed delivery and lend support where and when they're needed.

Financial and Operational Stability

Kollmorgen is part of Fortive. A key driver in the growth of all Fortive divisions is the Fortive Business System, which relies on the principle of "kaizen" — or continuous improvement. Using world-class tools, cross-disciplinary teams of exceptional people evaluate processes and develop plans that result in superior performance.

Kollmorgen: Your partner. In Motion.

Table of Contents

•	Direct Drive Linear (DDL) Motor	4
•	AKD® Servo Drive	10
•	Co-Engineering Capabilities	14
•	Direct Drive Linear Motor Summary	15
•	DDL Ironless - Non-cooled Data and Dimensions	
	IL06 Series	18
	IL12 Series	20
	IL18 Series	22
	IL24 Series	26
•	Ironless Magnet Ways	28
	DDL Ironcore Data and Dimensions	
	ICD05 Series	32
	ICD10 Series	34
>	ICD Magnet Ways	36
•	DDL Ironcore - Non-cooled Data and Dimensions	
	IC11 Series	40
	IC22 Series	42
	IC33 Series	46
	IC44 Series	50
	DDL Ironcore - Water-cooled Data and Dimensions	
	IC11 Series	54
	IC22 Series	56
	IC33 Series	60
	IC44 Series	64
	Ironcore Magnet Ways	68
•	Wiring and Output	70
•	High Flex Cable Sets	72
•	Application Sizing	74
	Model Nomenclature	78
•	MOTIONEERING® Online	81

Direct Drive Linear Motor

Our direct drive linear motor series provide new dimension in performance with high throughput, accuracy, and zero maintenance. The product line are frameless, permanent magnet, three phase, brushless servo motors. The DDL product line consists of two fundamental constructions, Ironless (slotless) and Ironcore. Ironless motors have no attractive force between the framless components and zero cogging for the ultra smooth motion. Ironcore motors provide the highest force per frame size. They feature a patented anti-cogging design which yields extremely smooth operation.

The Benefits of Direct Drive Linear Motor

Zero Maintenance with Greater Accuracy and Higher Bandwidth	Smoother velocity and reduced audible noise					
	 Power transmission without backlash 					
	 Transmission elements such as couplings, toothed belts, ball/lead screws, rack & pinions, and other fitted components can be eliminated 					
	 No gears or screws, no lubrication required 					
	 Improved machine reliability 					
• Wide Range of Sizes and Force to Cover any Linear Application	Increased performance for the entire system					
	Flat, compact drive solution					
	Easily mix / match motors and drives					
	 Real-life acceleration up to 10 G 					
Simplified, High Force Permanent Magnet Design	 Higher bandwidth and faster response than ball/lead screws or rack & pinion solutions 					
	 Rapid indexing of heavy loads with peak force up to 12,500 N (2,800 lb) 					
	• Reduced audible noise, fewer parts and lower cost of ownership					
	More compact machine design					

Direct Drive Linear Motor Overview Free Phone: 877-378-0240 SERVO GO.com Volume Phone: 877-378-0240 Sales@servo2go.com Www.servo2go.com

Kollmorgen Direct Drive Linear DDL Motor Series

Kollmorgen supplied its first linear motors in the late 1970's for use in precision X-Y tables and coating systems. These were brush DC motors using the Kollmorgen patented push-through commutator bar method. This led to development in the early 1980's of the brushless versions of the linear motor which were used in film processing applications where smooth, high stiffness, linear motion was required. During the past 30 years, advances in permanent magnet material, power semiconductors, and microprocessor technology have been the enablers for increased performance and lower costs for linear motors.

DDL motors series comply with the Low Voltage Directive 73/23/EEC for installation in a machine. Safety depends upon installing and configuring motor per the manufacturer's recommendations. The machine in which this product is to be installed must conform to the provisions of EC directive 89/336/EEC. The installer is responsible for ensuring that the end product complies with all the relevant laws in the country where the equipment is installed.

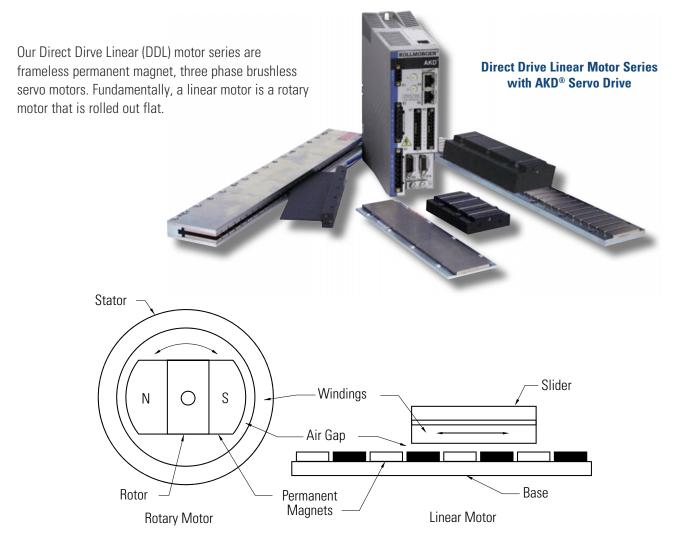
Standard Product Features

Ironless:

- Peak force 60 to 1600 N (13.6 to 360 lbf)
- Continuous force 21 to 450 N (4.6 to 101lbf)
- · Zero cogging
- Zero attractive force
- Smooth motion for speed as low as 1 micron/second (0.00004 in/sec)
- Low mass coil assembly for high acceleration

Ironcore:

- Peak force IC series: 320 to 8407 N (71.9 to 1890 lbf)
- Continuous force IC series: 144 to 6916 N (32.4 to 1555 lbf)
- Peak force ICD series: 165 to 1099 N (38 to 254 lbf)
- Continuous force ICD series: 57.0 to 315 N (12.8 to 70.8 lbf)
- Patented anti-cogging technique for minimal cogging without magnet skewing
- High motor constant (Km)
- · High force density
- ICD series advantage:
 - Very low profile
 - Low attraction force
 - Suitable to replace many Ironless applications


All Motors:

- Zero contact, zero maintenance, brushless design
- 3 phase sinusoidal commutation
- Peak accelerations easily above 10 G
- High position accuracy and resolution
- · Very low settling time
- Low thermal losses
- Modular magnet design

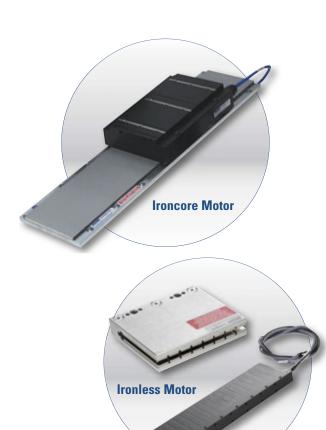
Standard Options:

- Hall effect feedback
- Thermal protection
- Thermistor
- Thermostat (Ironcore)
- Supplemental air or water cooling (Ironcore)
- Cable options
- Magnet way covers for easy cleaning (Ironcore)
- · FM approved, hazardous environment

Rotary Motor Rolled Out Flat

The two primary components of permanent magnet brushless rotary motors are the stator (primary coils) and the rotor (secondary or rotating magnets). In brushless linear motors the rotor is rolled out flat to become the magnet track (also called the magnet way). The primary coils of the rotary motor are rolled out flat to become the coil assembly (also sometimes called the slider).

In most brushless linear motor applications it is typical for the magnet way to be stationary and the coil assembly to be in motion, because of the relative masses of the two components. But it is also perfectly acceptable and sometimes advantageous to reverse this arrangement. The basic electromagnetic operating principles are the same in either case and are identical to those of a rotary motor.


Direct Drive Linear Motor Overview Free Phone: 877-378-0240 SERVO GO.com Very Free Phone: 877-378-0240 Sales@servo2go.com WWW.servo2go.com WWW.servo2go.com

Direct Drive Linear Motor Options

Two types of linear motors are available, **Ironcore** and **Ironless**. Each one provides characteristics and features that are optimal depending upon the application. Ironcore motors have coils wound on silicon steel laminations, to maximize the generated force, with a single sided magnet way.

Using a patented electromagnetic design, DDL linear motors have the highest rated force per size, a high Km motor constant (equals low thermal losses), and low cogging forces without the need for skewing of the magnets. The high thrust forces possible with these motors make them ideal for accelerating and moving high masses, and maintaining stiffness during machining or process forces. Ironless motors have no iron, or slots for the coils to be wound on.

Therefore, these motors have zero cogging, a very light mass, and absolutely no attractive forces between the coil assembly and the magnet way. These characteristics are ideal for applications requiring very low bearing friction, high acceleration of lighter loads, and for maximizing constant velocity, even at ultra low speeds. The modular magnet ways consists of a double row of magnets to maximize the generated thrust force and to provide a flux return path for the magnetic circuit.

Feedback Types

All brushless motors require feedback for commutation. The conventional rotary motor typically utilizes a resolver mounted on the rear of the motor or Hall effect devices mounted integrally in the coil windings. For a linear motor, commutation feedback can also be accomplished with a variety of methods. Digital or linear Hall effect devices are available from Kollmorgen for the DDL motor series which allow the drive electronics to commutate the linear motors in a manner identical to rotary motors.

For exceptionally smooth motion requirements, sinusoidal drive electronics such as the Kollmorgen's AKD® series, using digital Hall effects, provide sinusoidal drive currents to the motor for the best constant force and velocity performance. As an alternative, it is typical for linear motor applications to have a linear encoder present in the system for position feedback. It is increasingly common today for drive amplifiers, such as the AKD digital amplifier, to derive the necessary commutation information directly from this linear encoder, either with or without supplemental digital Hall effect devices on startup. Other types of feedback used on linear motor applications include linear Inductosyns, laser interferometers, and LVDT.

Advantages

Wide Speed Range

Since the frameless parts of the linear motor are non-contact, and no limitations of a mechanical transmission are present, both very high speeds and very low speeds are easily obtainable. Speeds are truly not limited by the motor. Instead, by eliminating the mechanical transmission, speed becomes limited by other elements in the system such as the linear bearings, and the achievable bandwidth from any feedback devices. Application speeds of greater than 5 meters per second (200 in./sec.) or less than 1 micron per second (.00004 in./sec.) are typically achievable. In comparison, mechanical transmissions such as ball screws are commonly limited to linear speeds of 0.5 to 0.7 meters per second (20-30 in./sec.) because of resonances and wear. In addition to a wide speed range, linear motors, both ironcore and ironless, have excellent constant velocity characteristics, typically better than ± 0.01% speed variation.

High System Dynamics

In addition to high speed capability, direct drive linear motors are capable of very high accelerations. Limited only by the system bearings, accelerations of 3 to 5 G are quite typical for the larger motors and accelerations exceeding 10 G are easily achievable for smaller motors.

Easy Selection Process:

- Determine peak and continuous force required for your applications (see our applications section on pages 74-77 or use MOTIONEERING®, our online sizing and selection software tool)
- 2. Use the motor selection guide on pages 15-17 to choose your motor
- 3. Refer to the appropriate pages in the data publication for technical details
- 4. Build model number for ordering using pages 78-80

Smooth Operation and Positional Accuracy

Both ironless and ironcore motors exhibit very smooth motion profiles due to the inherent motor design of Kollmorgen's DDL series. Cogging, which is a component of force, is greatly reduced in the ironcore designs and is zero in the ironless designs. As a result, these direct drive linear motors provide very low force and velocity ripple for ultra smooth motion. Positioning accuracies are limited only by the feedback resolution, and sub-micron resolutions are commonly achievable.

Unlimited Travel

With the DDL motor series, magnet ways are made in 5 modular sections: 64 mm, 128 mm, 256 mm, 512 mm and 1024 mm long. Each module can be added in unlimited numbers to any other module to allow for unlimited travel. Whether the travel required is 1mm (0.04 inches) or 100 meters (330 feet), the DDL series can accommodate the need.

No Wear or Maintenance

Linear motors have few components, therefore the need for ball screw components such as nuts, bearing blocks, couplings, motor mounts and the need to maintain these components have been eliminated. Very long life and clean operation, with no lubrication or maintenance of these parts are the result.

Integration of Components is Much Simpler

Frameless linear motors require much fewer components than rotary motors with mechanical transmissions. A 0.8 mm airgap (0.031 inches) for the ironcore design and 0.5 mm airgap (0.020 inches) for the ironless design is the only alignment of the frameless linear motor components that is necessary. No critical alignments are required as with ball screws. Straightness of travel as provided by the system linear bearings is more than sufficient for the Kollmorgen linear motors.

Typical Applications for Linear Motors Include:

Machine Tool
Drilling
Milling
Grinding
Laser cutting
Cam grinding
Semiconductor
Wafer handling process
Wafer-inspection
Wafer slicing
Tab bonding
Wire bonding
lon implantation
Lithography
Textile

Carpet tufting

Measurement/inspection
Coordinate measurement machines
Electronic assembly
Pick-and-place machines
Component insertion
Screen printers
Adhesive dispensers
PC board inspection, drilling

Other applications include: Flight simulators Acceleration sleds Catapult

G-Force measurement

AKD® Servo Drive

Our AKD series is a complete range of Ethernet-based servo drives that are fast, feature-rich, flexible and integrate quickly and easily into any application. AKD ensures plug-and-play commissioning for instant, seamless access to everything in your machine. And, no matter what your application demands, AKD offers industry-leading servo performance, communication options, and power levels, all in a smaller footprint.

This robust, technologically advanced family of drives delivers optimized performance when paired with our best-in-class components, producing higher quality results at greater speeds and more uptime. With Kollmorgen servo components, we can help you increase your machine's overall equipment effectiveness (OEE) by 50%.

The Benefits of AKD Servo Drive

,					
 Automatically adjusts all gains, including observers 					
Immediate and adaptive response to dynamic loads					
Precise control of all motor types					
Compensation for stiff and compliant transmission and coupling:					
 Up to 27-bit-resolution feedback yields unmatched precision and excellent repeatability 					
 Very fast settling times result from a powerful dual processor system that executes industry-leading and patent pending servo algorithms with high resolution 					
 Advanced servo techniques such as high-order observer and bi-quad filters yield industry-leading machine performance 					
 Highest bandwidth torque-and-velocity loops. Fastest digital current loop in the market 					
 Six-channel real-time software oscilloscope commissions and diagnoses quickly 					
 Multi-function Bode Plot allows users to quickly evaluate performance 					
 Auto-complete of programmable commands saves looking up parameter names 					
 One-click capture and sharing of program plots and parameter settings allow you to send machine performance data instantly 					
 Widest range of programming options in the industry 					
• 3 to 48 Arms continuous current; 9 to 96 Arms peak					
 Very high power density enables an extremely small package 					
 True plug-and-play with all standard Kollmorgen servo motors and actuators 					
 Supports a variety of single and multi-turn feedback devices— Smart Feedback Device (SFD), EnDat2.2, 01, BiSS, analog Sine/ Cos encoder, incremental encoder, HIPERFACE®, and resolver 					
 Tightly integrated Ethernet motion buses without the need to add large hardware: EtherCAT®, SynqNet®, Modbus® TCP, EtherNet/IP™, PROFINET® RT, SERCOS® III, and CANopen® 					
 Scalable programmability from base torque-and-velocity through multi-axis master 					

AKD® Servo Drive

The AKD servo drive delivers cutting-edge technology and performance with one of the most compact footprints in the industry. These feature-rich drives provide a solution for nearly any application, from basic torque-and-velocity applications, to indexing, to multi-axis programmable motion with embedded Kollmorgen Automation Suite™. The versatile AKD sets the standard for power density and performance.

Industry-leading power density

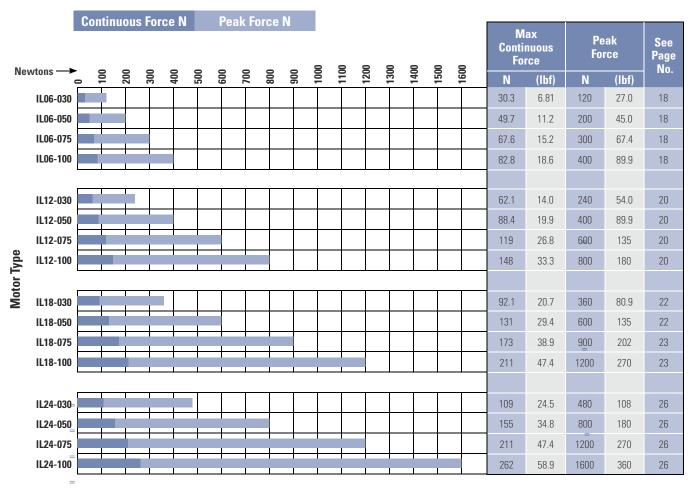
General Specifications

120 / 240 Vac 1 & 3 Phase (85 -265 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)	(W	Internal Regen (Watts) (Ohms)		Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)
AKD-x00306	3	9	1100	0	0	168 (6.61)	59 (2.32)	156 (6.14)	184 (7.24)
AKD-x00606	6	18	2000	0	0	168 (6.61)	59 (2.32)	156 (6.14)	184 (7.24)
AKD-x01206	12	30	4000	100	15	196 (7.72)	78 (3.07)	187 (7.36)	215 (8.46)
AKD-x02406	24	48	8000	200	8	247 (9.72)	100 (3.94)	228 (8.98)	265 (10.43)
240/480 Vac 3 Phase (187-528 V)	Continuous Current (Arms)	Peak Current (Arms)	Drive Continuous Output Power Capacity (Watts)	(W	Internal Regen (Watts) (Ohms)		Width mm (in)	Depth mm (in)	Depth with Cable Bend Radius mm (in)
AKD-x00307	3	9	2000	100	33	256 (10.08)	70 (2.76)	185 (7.28)	221 (8.70)
AKD-x00607	6	18	4000	100	33	256 (10.08)	70 (2.76)	185 (7.28)	221 (8.70)
AKD- x 01207	12	30	8000	100	33	256 (10.08)	70 (2.76)	185 (7.28)	221 (8.70)
AKD-x02407	24	48	16,000	200	23	306 (12.01)	105 (4.13)	228 (8.98)	264 (10.39)
AKD- x 04807	48	96	35,000	-	-	385 (15.16)	185 (7.28)	225 (8.86)	260 (10.23)

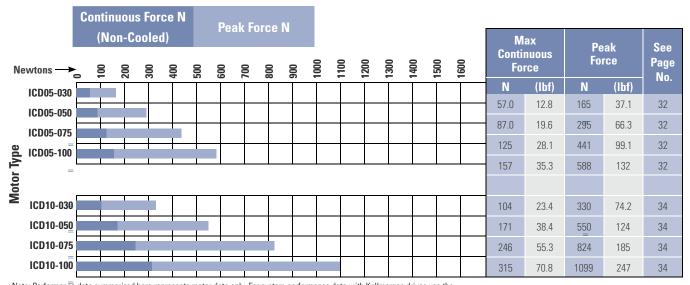
Note: For complete AKD model nomenclature, refer to page 80.

Co-Engineering Capabilities

Kollmorgen offers 5-day lead-time on nearly 1,000,000 commercial off-the-shelf (COTS) products, all with best-in-class performance and quality.


When COTS is not quite the best way to realize a totally optimized system, Kollmorgen can offer co-engineered solutions to meet your most difficult challenges and advance your competitive position. Drawing on a wealth of knowledge and expertise, our engineering support team will work alongside with you to build a solution that differentiates your machine and improves your bottom line.

Here are just few examples of how Kollmorgen delivers real value to companies likes yours:


What You Need	Why Motion Matters	Kollmorgen Co-Engineering Results
30% Increase in Throughput	Low inertia servomotorsHigh bandwidth servo loops	Using the Kollmorgen Automation Suite™ graphical camming design tool, Pipe Network™ and low-
	Simple, accurate, graphical programming tools	inertia AKM® servomotors, a major supplier of diabetic test labs increased throughput by more than 30% while improving accuracy and reducing scrap.
50% Increase in Accuracy and Quality	Low cogging frameless servomotor	Using our AKD® servo drive, a next-generation CT
	 Advaced observers and bi-quad filters 	scanning manufacturer achieved more than 50% improvement in velocity ripple to produce the most
	• Fast control loop update rates (.67μs)	accurate and detailed medical images possible while overcoming an extremely high moment of inertia.
25% Increase in Reliability	 Innovative Cartridge Direct Drive Rotary[™] 	Using Kollmorgen's award-winning Cartridge DDR®
(Overall Equipment Effectiveness)	(DDR [®]) motor	sevomotor technology, we eliminated more than 60 parts in a die-cutting machine and increased the
	 Eliminating parts on the machine 	OEE by 25% and throughput by 20%.
	 No additional wearing components 	, , ,
50% Reduction in Waste	Superior motor/drive system bandwidth	We helped a manufacturer of pharmaceutical
	 DDR technology: eliminates gearbox 20X more accurate than geared solution 	packaging machines incorporate Housed DDR motors to increase the throughput by 35% and reduce scrap by more than 50% through more accurate alignment of the capsules.

Direct Drive Linear Motor Summator Free Phone: 877-378-0240 Sales@servo2go.com

Ironless Linear Motors

ICD Linear Motors

Note: Performance data summarized here represents motor data only. For system performance data with Kollmorgen drives use the Motioneering Application Engine sizing software. See page 81 for more information about Motioneering.

Direct Drive Linear Motor Summary Fee Phone: 877-378-0240 Sales@servo2go.com

Ironcore Linear Motors

			tinuous Non-Co		N	Peak	Force	e N										
Nov	vtons >		0	0	0	0	0	0	0			0	0	Conti	ax nuous rce	Pe For		See Page No.
INCV	violis -	_	1000	2000	3000	4000	2000	0009	7000	0000	8	0006	10000	N	(lbf)	N	(lbf)	INU.
	IC11-030													144	32.4	320	71.9	40
	IC11-050													263	59.1	533	120	40
	IC11-075													413	92.8	800	180	40
	IC11-100													574	129	1067	240	40
	IC11-150													861	194	1600	360	40
	IC11-200													1197	269	2135	480	40
	IC22-030													280	62.9	624	140	42
	IC22-050													526	118	1039	234	42
	IC22-075													825	185	1558	350	42
	IC22-100													1148	258	2077	467	43
	IC22-150													1723	387	3117	701	43
/pe	IC22-200		 											2393	538	4156	934	43
Motor Type			l .				<u> </u>	I				<u> </u>	1					
Moto	IC33-030													431	96.9	944	212	46
_	IC33-050													789	177	1572	353	46
	IC33-075													1238	278	2358	530	46
	IC33-100			+										1722	387	3144	707	47
	IC33-150													2583	581	4716	1060	47
	IC33-200													3590	807	6291	1414	47
													1	0000	007	0201		17
	IC44-030												T	560	126	1259	283	50
	IC44-050													1053	237	2096	471	50
	IC44-075								$\overline{}$				+	1651	371	3144	707	50
	IC44-100													2296	516	4192	942	51
	IC44-150						\perp					1	+					
	IC44-150												+	3445	774	6289	1414	51
	1044-200											1	1	4786	1076	8388	1885	51

Note: Performance data summarized here represents motor data only. For system performance data with Kollmorgen drives use the Motioneering Application Engine sizing software. See page 81 for more information about Motioneering.

(Water-Cooled) Max Peak See **Continuous Force** Page **Force** No. Newtons (lbf) (lbf) IC11-030 57.1 70.8 IC11-050 97.1 IC11-075 IC11-100 IC11-150 IC11-200 IC22-030 IC22-050 IC22-075 IC22-100 IC22-150

Note: Performance data summarized here represents motor data only. For system performance data with Kollmorgen drives use the Motioneering Application Engine sizing software. See page 81 for more information about Motioneering.

Continuous Force N

Motor Type

IC22-200

IC33-030

IC33-050

IC33-075

IC33-100

IC33-150

IC33-200

IC44-030

IC44-050

IC44-075

IC44-100

IC44-150

IC44-200

Peak Force N

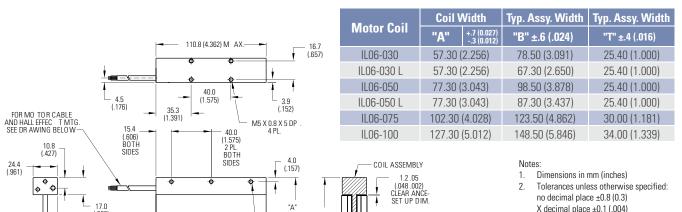
IL06 Performance Data

Ironless Non-Cooled Motors Series

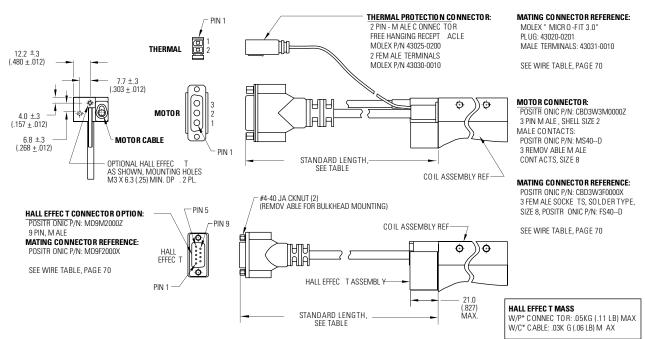
Rated Perfomance	Symbol	Units	IL06	IL06-030		IL06-050		IL06-075		IL06-100		
	_	N	120		200		300		400			
Peak Force	Fp	lbf	2	27		45		68		90		
		N	30).3	49	3.7	67	⁷ .6	82.8			
Continuous Force @ Tmax (1)	Fc	lbf	6.	81	11	.2	15.2		18.6			
Motor Constant	Km	N√W	5	.6	8	.0	10.2		12.1			
		Electrical Spe	cificati	ons (2)								
		Winding Code	A1	A 4	A 1	A 4	A1	A 4	A1	A 4		
Peak Current	lp	Arms	7.1	14.2	7.0	14.0	7.0	14.0	7.0	14.0		
Continuous Current @Tmax	lc	Arms	1.8	3.6	1.7	3.5	1.6	3.2	1.5	2.9		
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	6.1	1.5	8.6	2.2	11.7	2.9	14.7	3.7		
Electrical Inductance ±20%	L	mH L-L	1.3	0.33	3.00	0.75	5.00	1.25	7.00	1.75		
Back EMF Constant	.,	Vpeak/m/s L-L	13.7	6.9	23.3	11.6	34.9	17.5	46.5	23.3		
@ 25°C±10%	Ke	Vpeak/in/sec L-L	0.35	0.17	0.59	0.30	0.89	0.44	1.18	0.59		
5 0 0 0500 4004	1.6	N/Arms	16.8	8.4	28.5	14.3	42.8	21.4	57.0	28.5		
Force Constant @ 25°C±10%	kf	lbf/Arms	3.8	1.9	6.4	3.2	9.6	4.8	12.8	6.4		
		Mechanical S	Specific	ations								
Coil Assembly Weight ±15%	Mc	kg	0.	27	0.	32	0.	38	0.	45		
Con Assembly Weight ±15%	IVIC	lbs	0	0.6		0.7		.8	1.	.0		
Magnetic Way Type			M	MW		MW		MW		/075	MW075	
iviagnetic vvay type			030	030L	050	050L						
Magnetic Way Weight ±15%	Mw	kg/m	9.4	7.3	12.2	10.2	18	1.9	27.3			
wagnetic way weight ±13 /0	IVIVV	lb/in	0.51	.040	0.68	0.56	1.	05	1.	51		
		Figures of Merit a	nd Addi	tional D	ata							
Electrical Time Constant	Te	ms	0.	21	0.	35	0.	43	0.	48		
Max.Theoretical Acceleration (3)	Amax	g's	45	5.2	63	3.6	80).6	90	0.7		
Magnetic Attraction	Fa	kN)	()	()	(0		
Iviayiletic Attraction	Id	lbf)	0		()	(0		
Thermal Resistance (4) (Coils to External Structure)	Rth	°C/Watt	1.	61	1.3	26	1.04		0.87			
Max. Allowable Coil Temp. (4)	Tmax	°C	13	130		130		130		130		

Notes

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.


IL06 Outline Drawings

M5 X 0.8 X 5 DP 6 PL., 3 PER SIDE



XX decimal place ±0.05 (0.002)

Ironless Non-Cooled Motors Series

Termination and Hall Effect Options

Connector Option							
Connector	Length						
P1	400 (16)						
P2	200 (8)						
P3	100 (4)						
P4	1200 (48)						

Flying Lead Option								
Leads	Length							
C1	400 (16)							
C2	200 (8)							
C3	100 (4)							
C4	1200 (48)							

Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

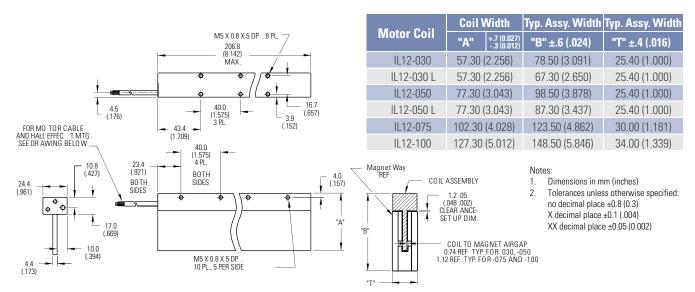
COIL TO MAGNET AIRGAP 0.74 REF TYP. FOR 030, -050 1.12 REF TYP. FOR -075 AND -100

MAGNET WAY REF.

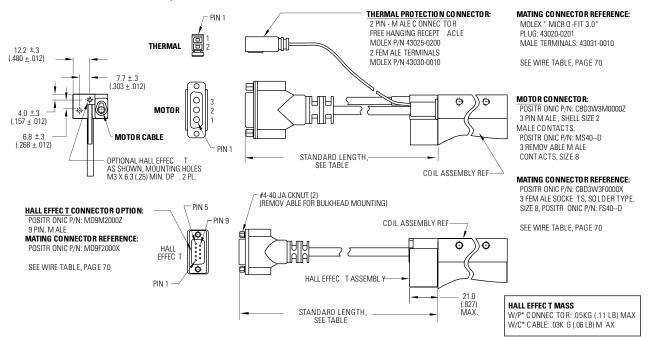
IL12 Performance Data

Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units	ı	L12-03	D	I	L12-05()	II	_12-07	IL12-100			
Deal, Farra	Γ.,	N		240			400			600		800		
Peak Force	Fp	lbf		54		90				135	180			
O	г.	N		62.1			88.4		119			148		
Continuous Force @ Tmax (1)	Fc	lbf		14.0			19.9			26.8		33	3.3	
Motor Constant @ 25°C	Km	N√W		7.8			11.3			14.5	17.2			
		Electric	al Spe	cificat	ions (2)								
		Winding Code	A1	A2	A 4	A1	A2	A 4	A1	A2	A 4	A2	A 4	
Peak Current	lp	Arms	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.1	14.0	28.1	
Continuous Current @Tmax	lc	Arms	1.8	3.7	7.4	1.6	3.1	6.2	1.4	2.8	5.6	2.6	5.2	
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	12.2	3.1	0.8	17.2	4.3	1.1	23.3	5.8	1.5	7.4	1.8	
Electrical Inductance ±20%	L	mH L-L	2.60	0.65	0.16	6.00	1.5	0.38	10.0	2.5	0.63	3.5	0.88	
Back EMF Constant	Ke	Vpeak/m/s L-L	27.5	13.8	6.9	46.5	23.3	11.6	69.8	34.9	17.5	46.5	23.3	
@ 25°C±10%		Vpeak/in/sec L-L	0.70	0.35	0.17	1.18	0.59	0.30	1.77	0.89	0.44	1.18	0.59	
Force Constant @ 25°C±10%	Kf	N/Arms lbf/Arms	33.7 7.6	16.9	8.4 1.9	57.0 12.8	28.5	14.3 3.2	85.5 19.2	42.8 9.6	21.4	57.0 12.8	28.5	
@ 25 0±10%				0.0			0.4	3.2	19.2	9.6	4.8	12.8	0.4	
		Mecha	micai s	0.42	Sations		0.52			0.65		0	77	
Coil Assembly Weight ±15%	Mc	kg Ibs		0.42 0.52				1.4			0.77 1.7			
				MW		MW			MW075			MW100		
Magnetic Way Type			030		030L	050 050L		050L						
		kg/m	9.4		7.3	12.2		10.2	18.9			27.3		
Magnetic Way Weight ±15%	Mw	lb/in	0.51		0.40	0.68	(0.56		1.05		1.	51	
		Figures of N	/lerit a	nd Add	itional	Data								
Electrical Time Constant	Te	ms		0.21			0.35			0.43		0.	48	
Max.Theoretical Acceleration (3)	Amax	g's		58.2			78.4			94.1		10	06	
Mannatia Atturbi	Γ.	kN		0			0			0		()	
Magnetic Attraction	Fa	lbf		0			0			0		()	
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.804			0.629		0.519			0.433		
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130			130			130	


Notes

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.


IL12 Outline Drawings

Ironless Non-Cooled Motors Series

Termination and Hall Effect Options

Connector Option								
Connector	Length							
P1	400 (16)							
P2	200 (8)							
P3	100 (4)							
P4	1200 (48)							

Flying Lead Option								
Length								
400 (16)								
200 (8)								
100 (4)								
1200 (48)								

Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

IL18 Performance Data

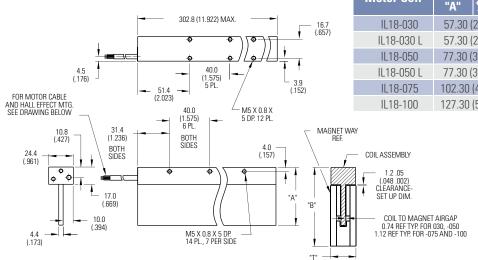
Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units		IL18-030			IL18-	050		
Peak Force	F	N		36	60			60	0	
Реак Force	Fp	lbf	81		135					
Combinuous Force @ Tonou (1)	Γ-	N		92.1		131				
Continuous Force @ Tmax (1)	Fc	lbf		20).7			29	.4	
Motor Constant @ 25°C	Km	N√W		9	.7			13.	.8	
	Eld	ectrical Specificat	tions (2)						
		Winding Code	A1	A2	A3	A 4	A1	A2	A 3	A 4
Peak Current	lp	Arms	7.1	14.3	21.4	42.8	7.0	14.0	21.0	42.1
Continuous Current @Tmax	lc	Arms	1.8	3.6	5.5	11.0	1.5	3.1	4.6	9.2
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	18.2	4.6	2.0	0.5	25.7	6.4	2.9	0.7
Electrical Inductance ±20%	L	mH L-L	3.8	0.95	0.42	0.11	9.00	2.25	1.00	0.25
Back EMF Constant	V-	Vpeak/m/s L-L	41.2	20.6	13.7	6.9	69.8	34.9	23.3	11.6
@ 25°C±10%	Ke	Vpeak/in/sec L-L	1.05	0.52	0.35	0.17	1.77	0.89	0.59	0.30
Force Constant @ 25°C±10%	Kf	N/Arms	50.5	25.3	16.8	8.4	85.5	42.8	28.5	14.3
Force Constant @ 25°C±10%	NI	lbf/Arms	11.4	11.4 5.7		1.9	19.2	9.6	6.4	3.2
	M	echanical Specifi	cations							
Coil Assembly Weight ±15%	Mc	kg		0.	57		0.72			
Con Assembly Weight ±13 /6	IVIC	lbs		1.	3			1.0	.6	
				M	W			M	N	
Magnetic Way Type			03	30	03	OL	05	50	05	OL
		kg/m	9.	4	7.3		12	2	10	
Magnetic Way Weight ±15%	Mw	lb/in	0.!		0.4		0.6		0.0	
	Figure	s of Merit and Add	itional							
Electrical Time Constant	Te	ms	0.21				0.3	35 85		
Max.Theoretical Acceleration (3)	Amax	g's	64.5				84			
		kN	()			0		
Magnetic Attraction	Fa	lbf		()		0			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.5	536			0.4	19	
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30		130			

Notes

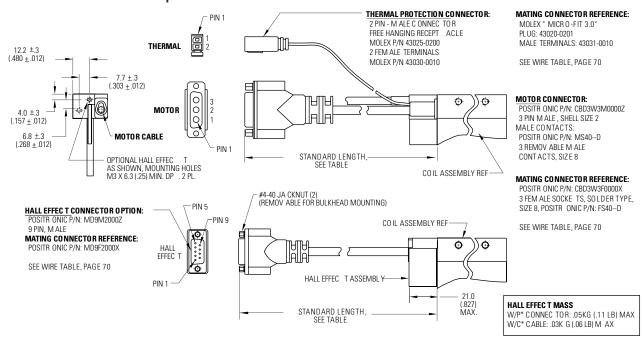
- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

Rated Perfomance	Symbol	Units	IL18-075			IL18-	100			
Peak Force	Fo.	N		90	00			120	00	
reak fuice	Fp	lbf	202				270			
Continuous Force @ Tmax (1)	Fc	N 173			211					
Continuous Force & Finax (1)	10	lbf		38	3.9			47.	.4	
Motor Constant @ 25°C	Km	N√W		17	'.7			21.	.0	
	Eld	ectrical Specificat	tions (2)						
		Winding Code	A1	A2	А3	A 4	A1	A2	A3	A 4
Peak Current	lp	Arms	7.0	14.0	21.0	42.1	7.0	14.0	21.0	42.1
Continuous Current @Tmax	lc	Arms	1.4	2.7	4.0	8.1	1.2	2.5	3.7	7.4
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	35.0	8.8	3.9	1.0	44.2	11.1	4.9	1.2
Electrical Inductance ±20%	L	mH L-L	15.0	3.75	1.67	0.42	21.0	5.25	2.33	0.58
Back EMF Constant	Vo	Vpeak/m/s L-L		52.4	34.9	17.5	140	69.9	46.6	23.3
@ 25°C±10%	Ke	Vpeak/in/sec L-L	2.66	1.33	0.89	0.44	3.55	1.77	1.18	0.59
Force Constant @ 25°C±10%	Kf	N/Arms	128	64.2	42.8	21.4	171	85.6	57.0	28.5
Tuice Constant @ 25 C±10 /6	KI	lbf/Arms	28.8	14.4	9.6	4.8	38.5	19.2	12.8	6.4
	M	echanical Specifi	pecifications							
Coil Assembly Weight ±15%	Mc	kg	0.91			1.10				
Coll Assembly Weight ±13 /0	IVIC	lbs		2.0			2.4			
Magnetic Way Type				MW	/075			MW	100	
Magnetic Way Weight ±15%	Mw	kg/m		18	3.9			27.	.3	
Maynetic way weight £15%	IVIVV	lb/in		1.	05		1.51			
	Figure	s of Merit and Add	of Merit and Additional Data							
Electrical Time Constant	Te	ms		0.	43			0.4	8	
Max.Theoretical Acceleration (3)	Amax	g's	101					11	1	
Magnetic Attraction	Fa	kN		()		0			
iviagnetic Attraction	ı a	lbf		0			0			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.35		0.29				
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	0	


Notes:

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IL18 Outline Drawings

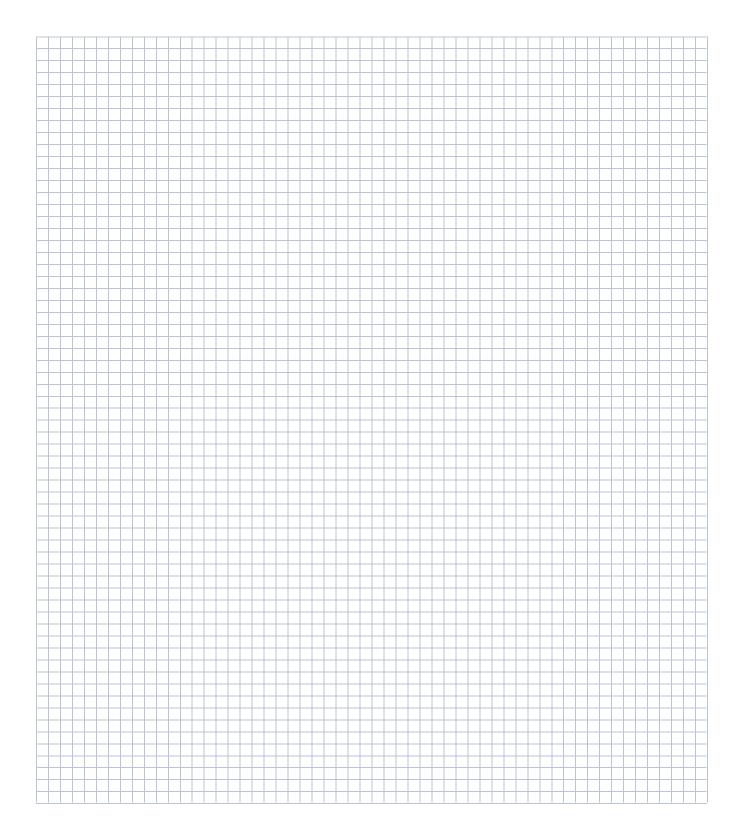


Typ. Assy. Width Typ. Assy. Width **Motor Coil** "B" ±.6 (.024) "T" ±.4 (.016) 57.30 (2.256) 78.50 (3.091) 25.40 (1.000) 57.30 (2.256) 67.30 (2.650) 25.40 (1.000) 77.30 (3.043) 98.50 (3.878) 25.40 (1.000) 77.30 (3.043) 87.30 (3.437) 25.40 (1.000) 123.50 (4.862 30.00 (1.181 102.30 (4.028) 127.30 (5.012) 148.50 (5.846) 34.00 (1.339)

Notes:

- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)

Termination and Hall Effect Options


Connector Option							
Connector	Length						
P1	400 (16)						
P2	200 (8)						
P3	100 (4)						
P4	1200 (48)						

Flying Lead Option							
Leads	Length						
C1	400 (16)						
C2	200 (8)						
C3	100 (4)						
C4	1200 (48)						

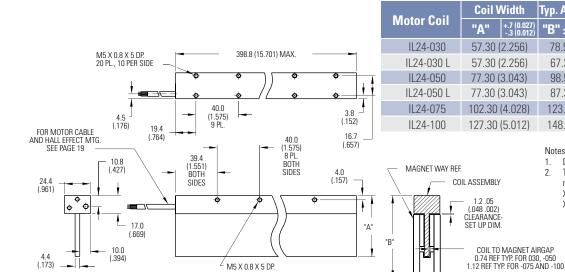
Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

Notes

IL24 Performance Data

Ironless Non-Cooled Motors Series

Rated Perfomance	Symbol	Units	IL	_24-03	80	Ш	24-05	i0		IL24	-075			IL24	-100	
Deel Ferre	Γ.	N		480			800			12	00			16	00	
Peak Force	Fp	lbf		108			180			27	70			36	60	
Continuous Force @ Tmax (1)	Γ.	N		109		155		211				262				
Continuous Force @ Tmax (1)	Fc	lbf		24.5			34.8			47	.4			58	3.9	
Motor Constant @ 25°C	Km	N√W		11.2			15.9			20).6		24.4			
		E	lectri	cal S	pecifi	catio	ns (2)									
		Winding Code	A1	A2	A3	A1	A2	А3	A1	A2	A3	A 4	A1	A2	А3	A 4
Peak Current	lp	Arms	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.0	56.1	7.0	14.0	28.1	56.1
Continuous Current @Tmax	lc	Arms	1.6	3.2	6.4	1.4	2.7	5.4	1.2	2.5	4.9	9.9	1.2	2.3	4.6	9.2
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	24.3	6.1	1.5	34.3	8.6	2.1	46.6	11.7	2.9	0.73	58.9	14.7	3.7	0.92
Electrical Inductance ±20%	L	mH L-L	5.1	1.28	0.32	12.0	3.00	0.75	20.0	5.0	1.25	0.31	28.0	7.00	1.75	0.44
Back EMF Constant	V	Vpeak/m/s L-L	55.0	27.5	13.8	93.1	46.5	23.3	140.	69.9	34.9	17.5	186	93.1	46.6	23.3
@ 25°C±10%	Ke	Vpeak/in/sec L-L	1.40	0.70	0.35	2.36	1.18	0.59	3.55	1.77	0.89	0.44	4.73	2.37	1.18	0.59
Force Constant	Kf	N/Arms	67.4	33.7	16.9	114	57.0	28.5	171	85.6	42.8	21.4	228	114	57.0	28.5
@ 25°C±10%	IXI	lbf/Arms	15.2	7.6	3.8	25.6	12.8	6.4	38.5	19.2	9.6	4.8	51.3	25.6	12.8	6.4
		N	/lecha	anica	Spec	ifica	tions									
Coil Assembly Weight ±15%	Mc	kg		0.72		0.92		1.17			1.42					
Out Assembly Weight 11070	IVIC	lbs		1.6		2.0			2.6			3.1				
BA				MW			MW		MW075				MW100			
Magnetic Way Type			030)	030L	050) (050L								
Magnetic Way Weight ±15%	Mw	kg/m	9.4		7.3	12.2	2	10.2		18	.9			27	'.3	
way weight ±15 /6	IVIVV	lb/in	0.5	1	0.40	0.68	3 1	0.56		1.0	05			1.	51	
		Figure	es of I	Merit	and A	dditio	onal C)ata								
Electrical Time Constant	Te	ms		0.21			0.35			0.	43			0.	48	
Max.Theoretical Acceleration(3)	Amax	g's		68.0			88.7			10)5			1′	15	
Magnetic Attraction	Fa	kN		0			0			()			()	
iviagnetic Attraction	Id	lbf		0			0			()			()	
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.40			0.32			0.3	26			0.	22	
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130			13	30			13	30	


Notes

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IL24 Outline Drawings

Ironless Non-Cooled Motors Series

M5 X 0.8 X 5 DP

Notes:

- Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

Typ. Assy. Width Typ. Assy. Width

25.40 (1.000)

25.40 (1.000)

25.40 (1.000)

25.40 (1.000)

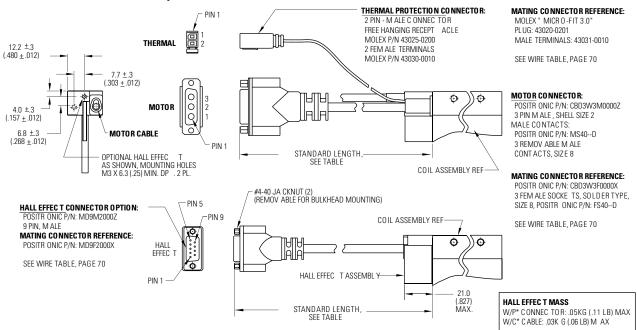
30.00 (1.181)

34.00 (1.339)

"B" ±.6 (.024

78.50 (3.091)

67.30 (2.650)


98.50 (3.878)

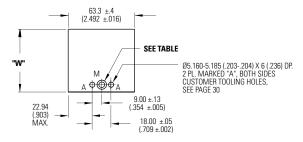
87.30 (3.437)

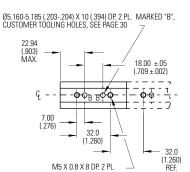
123.50 (4.862)

148.50 (5.846)

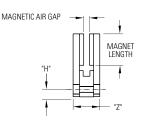
Termination and Hall Effect Options

P1	400 (16)
P2	200 (8)
P3	100 (4)
P4	1200 (48)


Flying Lead Option							
Leads	Length						
C1	400 (16)						
C2	200 (8)						
C3	100 (4)						
C4	1200 (48)						

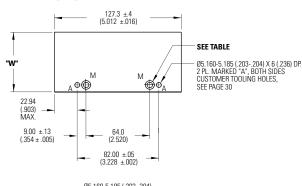

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

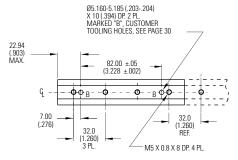
Ironless Magnet Ways



MWxxx-0064

Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 30). Standard assembly lengths are shown below.


Notes:

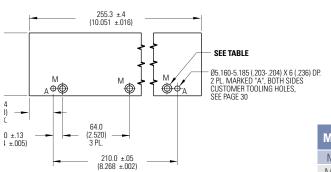

- . Dimensions in mm (inches)
- Tolerances unless otherwise specified:
 no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)

Magnet Way	Magnet Size Ref.	"H" ±.8 (.003)	"W" ±.4 (.016)	"Z" ±.4 (.016)
MW030-0064	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0064	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0064	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0064	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0064	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0064	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

		Hardware (Hex, Socket Head Cap)							
Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option			
MW030-0064	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW030L-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.			
MW050-0064	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW050L-0064	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.			
MW075-0064	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW100-0064	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.			

MWxxx-0128

Magnet Way	Magnet Size	"H"	"W"	"Z"
magnot vray	Ref.	±.8 (.003)	±.4 (.016)	±.4 (.016)
MW030-0128	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0128	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0128	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0128	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0128	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0128	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

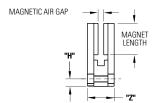

	Hardware (Hex, Socket Head Cap)								
Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option			
MW030-0128	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW030L-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.			
MW050-0128	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW050L-0128	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.			
MW075-0128	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW100-0128	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.			

Toll Free Friorie: 877-378-024 sales@servo2go.com www.servo2go.com

MWxxx-0256

Magnet assemblies are modular and can be installed in multiples of same or alternate lengths (see page 30). Standard assembly lengths are shown below.

В-ф-ф


M5 X 0.8 X 8 DP. 8 PL.

Φ.

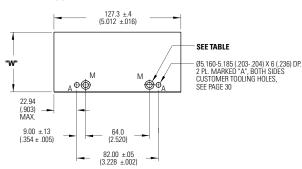
32.0 (1.260) REF.

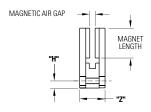
Ø5.160-5.185 (.203-.204) X 10 (.394) DP. 2 PL. MARKED "B", CUSTOMER TOOLING HOLES, SEE PAGE 30

> 210.0 ±.05 (8.268 ±.002)

Notes:

- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified:
 no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)


Magnet Way	Magnet Size Ref.	"H" ±.8 (.003)	"W" ±.4 (.016)	"Z" ±.4 (.016)
MW030-0256	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0256	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0256	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0256	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0256	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0256	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)


		Hardware (Hex, Socket Head Cap)							
Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option			
MW030-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW030L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.			
MW050-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW050L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.			
MW075-0512	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.			
MW100-0512	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.			

MWxxx-0512

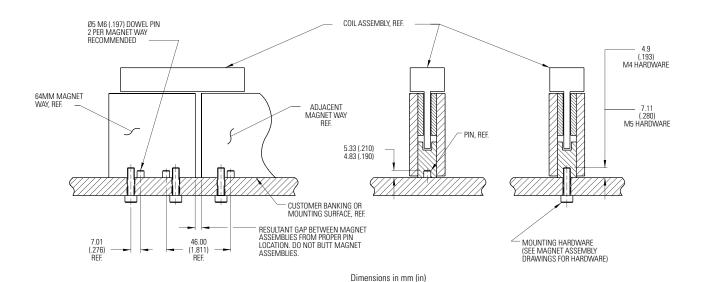
7.00 (.276) **-О**-Ф В - О

32.0 (1.260) 7 PL.

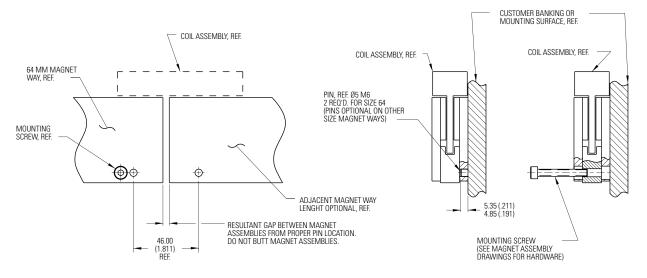
Magnet Way	Magnet Size Ref.	"H" ±.8 (.003)	"W" ±.4 (.016)	"Z" ±.4 (.016)
MW030-0512	30mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L-0512	30mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW050-0512	50mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L-0512	50mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW075-0512	75mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW100-0512	100mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

	X 10 (.394) DP. 2 PL. MARKED "B", CUSTOMER TOOLING HOLES, SEE PAGE 30
22.94 (.903) MAX.	82.00 ±05 (3.228 ±002)
7.00	⊕ _B ⊙⊙⊙ ,
(.276)	32.0 (1.260) REF. 3 PL. M5 X 0.8 X 8 DP. 4 PL.

Ø5.160-5.185 (.203-.204)

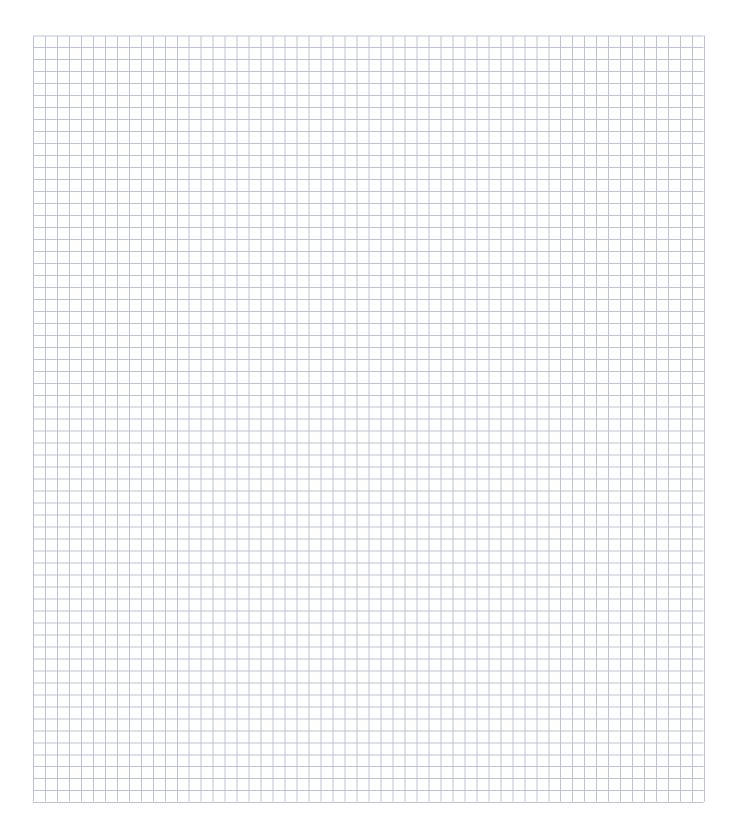

	Hardware (Hex, Socket Head Cap)							
Magnet Way	Hole Dia. ±.13 (.005)	C'bore Dia. ±.13 (.005)	Cbore Depth ±.13 (.005)	Metric	Inch	Bottom Mount Thread Option		
MW030-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW030L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.		
MW050-0512	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW050L-0512	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.		
MW075-0512	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.		
MW100-0512	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.		

Ironless Magnet Ways



Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm.

Bottom Mounting Installation

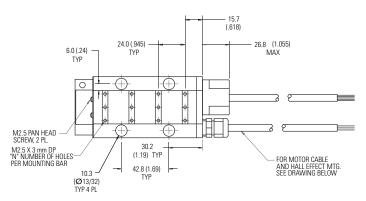

Side mounting installation

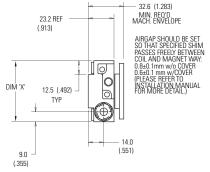
Dimensions in mm (in)

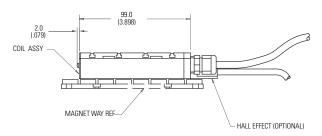
Notes

ICD05 Performance Data

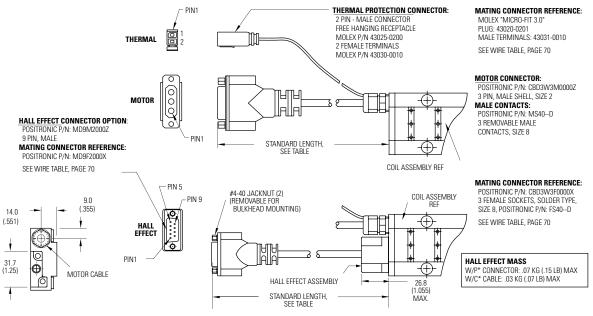
Ironcore Motors Series


Rated Perfomance	Symbol	Units	ICD0	5-030	ICD05-050		ICD0	5-075	ICD05-100		
Deal Farre	E.	N	16	165		295		441		38	
Peak Force	Fp	lbf	37	37.1		66.3		99.1		32	
0 5 (1)	_	N	57	'.O	87	'.O	12	25	157		
Continuous Force @ Tmax (1)	Fc	lbf	12	.8	19	1.6	28	3.1	35.3		
	.,	N/√W	10	1.3	14	.5	18	.6	22	2.0	
Motor Constant @ 130°C	Km	lbf/√W	2	.3	3	.3	4.	.2	4	.9	
		N/√W	12	3	17	'.2	22	0	26	6.0	
Motor Constant @ 25°C	Km25	lbf/√W	2	.8	3.	.9	4.	.9	5	.9	
		Electrical Spe	cificati	ons (2)							
		Winding Code	A 1	A5	A 1	A5	A1	A5	A 1	A5	
Peak Current	lp	Arms	7.9	13.7	8.5	14.7	8.5	14.7	8.5	14.7	
Continuous Current @Tmax	lc	Arms	2.1	3.7	2.0	3.4	1.9	3.3	1.8	3.1	
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	3.2	1.1	4.5	1.5	6.1	2.0	7.7	2.6	
ElectricalInductance ±20%	L	mh L-L	9.1	3.0	14.4	4.8	21.0	7.0	27.6	9.2	
Back EMFConstant		Vpeak/m/s L-L	21.8	12.6	36.3	21.0	54.3	31.4	72.4	41.8	
@25°C±10%	Ke	Vpeak/in/sec L-L	0.55	0.32	0.92	0.53	1.38	0.80	1.84	1.06	
		N/Arms	26.7	15.4	44.5	25.7	66.5	38.4	88.7	51.2	
Force Constant @ 25°C±10%	Kf	lbf/Arms	6.0	3.5	10.0	5.8	15.0	8.6	19.9	11.5	
		Mechanical S	Specific	pecifications							
		kg	0.62		0.	95	1.36		1.	71	
Coil Assembly Weight ±15%	Mc	lbs	1.4		2.1		3.0		3.8		
Magnetic Way Type		155	MCD030		MCD050		MCD075		MCD100		
		kg/m	2.70		3.93		5.48		7.04		
Magnetic Way Weight ±15%	Mw	lbs/in	0.15		0.22		0.31		0.39		
Figures of Merit and Additional Data											
Electrical Time Constant	Te	ms		.9	3.2		3.	.4	3	.6	
Max.Theoretical Acceleration (3)	Amax	g's	28	28.0).2	31	.9	32	2.8	
		kN	n	53	0	89	1.5	33		78	
Magnetic Attraction	Fa	lbf	0.53		0.89		1.33				
Thermal Resistance (4)		IDI		0	200		299		400		
(coils to external structure)	Rth	°C/Watt	3.50		3.50 2.90		2.30		2.06		
Max. Allowable Coil Temp. (4)	Tmax	°C	13	RU .	10	RU .	120		120		
iviax. Allowable Coll Tellip. (4)	HIIIdX	C	130		130		130		130		


Notes:


- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

ICD05 Outline Drawings



Motor Coil	Coil Width	# Holes
Туре	"Х"	"N"
ICD05-030	55.0 (2.165) ± 1.0 (.04)	3
ICD05-050	75.0 (2.953) ± 1.0 (.04)	4
ICD05-075	100.0 (3.937) ± 1.0 (.04)	5
ICD05-100	125.0 (4.921) ± 1.0 (.04)	5

Notes:

- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)

Termination and Hall Effect Options

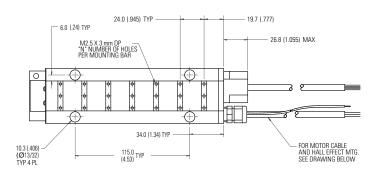
Connector Option						
Connector	Length					
P1	400 (16)					
P2	200 (8)					
P3	100 (4)					
P4	1200 (48)					

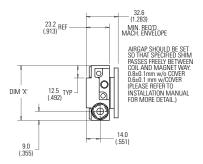
Flying Lead Option						
Leads	Length					
C1	400 (16)					
C2	200 (8)					
C3	100 (4)					
C4	1200 (48)					

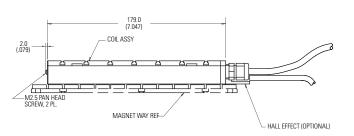
Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

ICD10 Performance Data

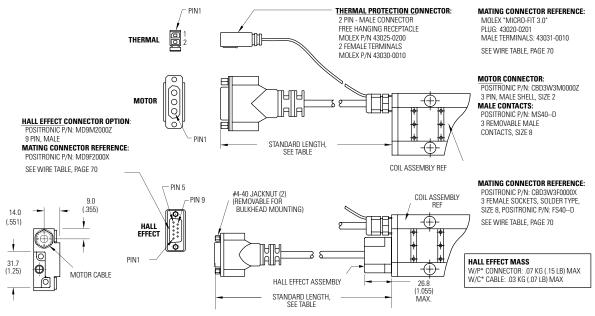
Ironcore Motors Series


@ 25°C±10%	Rated Perfomance	Symbol	Units		ICD1	0-030)	ICD10-050			ICD10-075			ICD10-100						
N	D 15	-	N		30	30		550			824					10	99			
Continuous Force @ Tmax (1) Fc lbf 23.4 38.4 55.3 70.8 Motor Constant @ 130°C Km lbf/√W 14.6 20.5 26.4 31.3 Motor Constant @ 25°C Km25 N/√W 17.3 24.3 31.3 37.1	Peak Force	ŀр	lbf		74	1.2		124			185			247						
Ibf	0 1 5 07 4	_	N		10)4			1.	71		246			315					
Motor Constant @ 130°C Km Ibf/√W 3.3 4.6 5.9 7.0 Motor Constant @ 25°C Km25 N/√W 17.0 Ibf/√W 3.3 4.6 5.9 7.0 Motor Constant @ 25°C Winding Code A1 A4 A5.5 7.0 8.3 Electrical Specifications (2) Winding Code A1 A4 A5 A8 A1 A4 A5 <th cols<="" td=""><td>Continuous Force @ Imax (1)</td><td>FC</td><td>lbf</td><td></td><td>23</td><td>3.4</td><td></td><td></td><td>38</td><td>3.4</td><td></td><td colspan="3">55.3</td><td></td><td colspan="3">70.8</td><td></td></th>	<td>Continuous Force @ Imax (1)</td> <td>FC</td> <td>lbf</td> <td></td> <td>23</td> <td>3.4</td> <td></td> <td></td> <td>38</td> <td>3.4</td> <td></td> <td colspan="3">55.3</td> <td></td> <td colspan="3">70.8</td> <td></td>	Continuous Force @ Imax (1)	FC	lbf		23	3.4			38	3.4		55.3				70.8			
N/√W 17.3 24.3 31.3 37.1	Motor Constant @ 120°C	l/m	N/√W		14	1.6			20).5			26	5.4		31.3				
Motor Constant @ 25°C Km25 Ibf/√W 3.9 5.5 7.0 8.3	Motor Constant @ 130 C	NIII			3	.3		4.6			5.9			7.0						
Winding Code A1 A4 A5 A8 A1 A5 A8 A1 A4 A5 A8 A1 A5 A8	Motor Constant @ 25°C	Km25																		
Winding Code A1 A4 A5 A8							101				7.0			8.3						
Peak Current Ip Arms 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 7.9 15.8 13.7 27.4 2.0 2.0 2.0 3.8 3.3 6.6 1.8 3.7 3.2 6.4 1.8 3.5 3.1 6.1 Electrical Inductance ±20% L mh L-L 18.3 4.6 6.1 1.5 29.0 7.3 9.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>A.F.</td><td>4.0</td><td>0.4</td><td></td><td>A.F.</td><td>4.0</td><td></td><td></td><td>AF</td><td>40</td></t<>						•				A.F.	4.0	0.4		A.F.	4.0			AF	40	
Continuous Current @Tmax	Pook Current	ln	_																	
ElextricalResistance @ 25°C±10% Rm Ohms L-L 6.4 1.6 2.1 0.5 9.0 2.2 3.0 0.7 12.2 3.0 4.1 1.0 15.4 3.9 5.1 1.3 Electrical Inductance ±20% L mh L-L 18.3 4.6 6.1 1.5 29.0 7.3 9.7 2.4 42.4 10.6 14.1 3.5 55.8 13.9 18.6 4.6 Back EMF Constant @ 25°C±10% Vpeak/m/s L-L 43.7 21.8 25.2 12.6 72.8 36.4 42.0 21.0 109.2 54.6 63.1 31.5 145.7 72.8 84.1 42.0 Vpeak/m/s L-L 1.11 0.55 0.64 0.32 1.85 0.92 1.07 0.53 2.77 1.39 1.60 0.80 3.70 1.85 2.14 1.07 M/Arms 53.5 26.8 30.9 15.4 89.2 44.6 51.5 25.7 134 66.9 77.2 38.6 178 89.2 103 51.8												_								
@ 25°C±10% Rm Ohms L-L 6.4 1.6 2.1 0.5 9.0 2.2 3.0 0.7 12.2 3.0 4.1 1.0 15.4 3.9 5.1 1.3 Electrical Inductance ±20% L mh L-L 18.3 4.6 6.1 1.5 29.0 7.3 9.7 2.4 42.4 10.6 14.1 3.5 55.8 13.9 18.6 4.6 Back EMF Constant		10	AIIIIS	1.3	3.3	3.4	0.0	1.3	3.0	3.3	0.0	1.0	3.7	J.Z	0.4	1.0	3.0	3.1	0.1	
Back EMF Constant (Note of the constant of th		Rm	Ohms L-L	6.4	1.6	2.1	0.5	9.0	2.2	3.0	0.7	12.2	3.0	4.1	1.0	15.4	3.9	5.1	1.3	
©25°C±10%	Electrical Inductance ±20%	L	mh L-L	18.3	4.6	6.1	1.5	29.0	7.3	9.7	2.4	42.4	10.6	14.1	3.5	55.8	13.9	18.6	4.6	
@25°C±10%	Back EMF Constant	Kρ	Vpeak/m/s L-L	43.7	21.8	25.2	12.6	72.8	36.4	42.0	21.0	109.2	54.6	63.1	31.5	145.7	72.8	84.1	42.0	
Force Constant @ 25°C+10% Kf	@25°C±10%	IXO	1 7 7																	
	Force Constant @ 25°C±10%	Kf	· ·																	
			•					30.1 15.0 17.4 8.7		8./	40.1 20.1 23.2 11.6		11.6							
Mechanical Specifications																				
Coil Assembly Weight ±15% Mc	Coil Assembly Weight ±15%	Mc		1.1		1.9			2.7			3.4								
			IDS	2.5		4.1			5.9			7.5								
· · ·	Magnetic Way Type			MCD030		MCD050			MCD075				MCD100							
Magnetic Way Weight ±15% Mw	Magnetic Way Weight ±15%	Mw	O.	2.70		3.93			5.48			7.04								
				0.15			0.22 0.31					0.	39							
Figures of Merit and Additional Data																				
				2.9		3.2														
	Max. Theoretical Acceleration(3)	Amax	- U	30.7		30.7		32.5												
Magnetic Attraction Fa	Magnetic Attraction	Fa		1.06		1.78		2.66				3.56								
	Thermal Desistance (4)		lbt	2.38		400		598				800								
Thermal Resistance (4) Rth °C/Watt 2.05 1.52 1.21 1.04		Rth	°C/Watt		2.	05		1.52		1.21			1.04							
Max. Allowable Coil Temp. (4) Tmax °C 130 130 130 130	(Tmax	°C		13	30			13	30		130			130					


Notes


- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

ICD10 Outline Drawings



Motor Coil	Coil Width	# Holes
Туре	"Х"	"N"
ICD10-030	55.0 (2.165) ± 1.0 (.04)	3
ICD10-050	75.0 (2.953) ± 1.0 (.04)	4
ICD10-075	100.0 (3.937) ± 1.0 (.04)	5
ICD10-100	125.0 (4.921) ± 1.0 (.04)	5

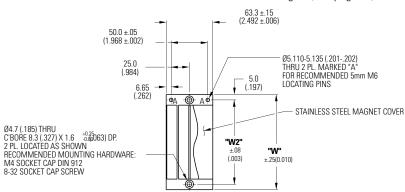
Notes:

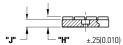
- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified:
 no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)

Termination and Hall Effect Options

Connector Option						
Connector	Length					
P1	400 (16)					
P2	200 (8)					
P3	100 (4)					
P4	1200 (48)					
P3 P4	. ,					

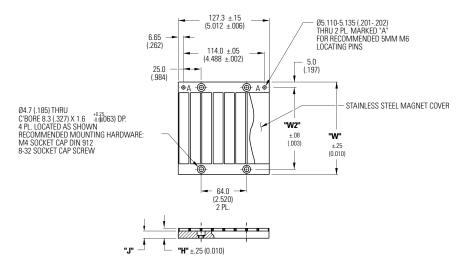
Flying Lead Option						
Leads	Length					
C1	400 (16)					
C2	200 (8)					
C3	100 (4)					
C4	1200 (48)					


Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72


ICD Magnet Ways

MCDxx-0064

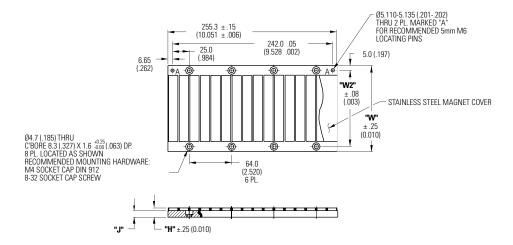
Magnet assembiles are modular and can be installed in multiples of same or alternate lengths (see page 38). Standard assembly lengths are shown below.



Туре	"W"	"W2"	"J"	H"
MCD030-0064-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0064-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0064-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0064-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)

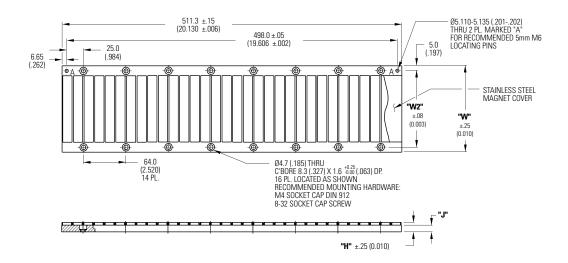
Dimensions in mm (in)

MCDxx-0128



Туре	"W"	"W2"	"J"	H"
MCD030-0128-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0128-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0128-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0128-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)

Dimensions in mm (in)

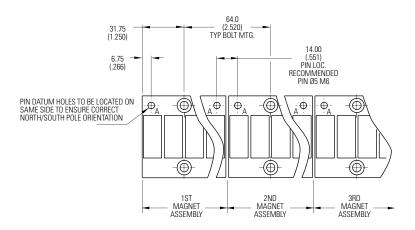

MCDxx-0256

Туре	"W"	"W2"	"J"	H"
MCD030-0256-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0256-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0256-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0256-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)

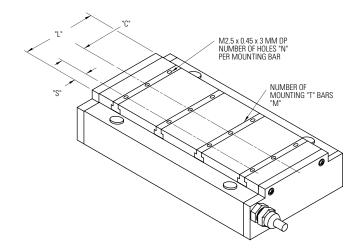
Dimensions in mm (in)

MCDxx-0512

Туре	"W"	"W2"	"J"	H"
MCD030-0512-001	55.0 (2.165)	45.0 (1.772)	4.0 (.157)	8.25 (.325)
MCD050-0512-001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD075-0512-001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	8.25 (.325)
MCD100-0512-001	125.0 (4.921)	115.0 (4.528)	4.0 (.157)	8.25 (.325)


Dimensions in mm (in)

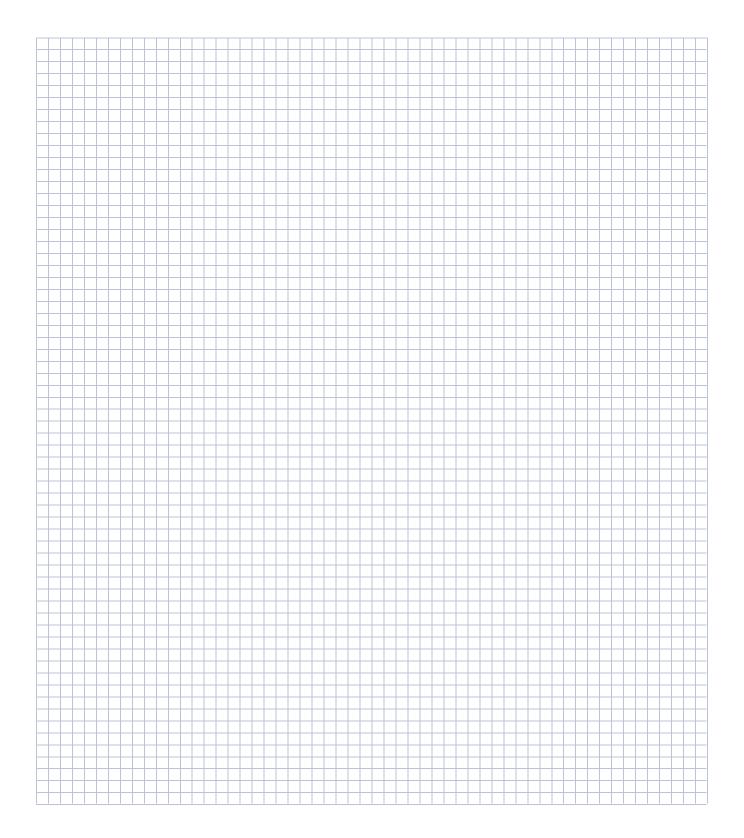
ICD Magnet Ways


Typical Installation of Multiple Ironcore Magnet Assemblies

Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm. Multiple magnet assemblies can be installed to obtain the desired length. Shown below is the method to mount multiple assemblies.

Dimensions in mm (in)

Typical Mounting Bar Lengths & Mounting Holes Tabulation



Dimensions in mm (in)

Motor Coil Type	Number of Holes "N"	Spacing Between Holes "C"	Mounting Bar Length "L"	" S"
ICDXX-030	3	12.0 (.472)	30 (1.18)	3.0 (.118)
ICDXX-050	4	12.0 (.472)	50 (1.97)	7.0 (2.76)
ICDXX-075	5	16.0 (.630)	75 (2.95)	5.5 (.217)
ICDXX-100	5	20.0 (.787)	100 (3.94)	10.0 (.394)

Motor Coil Type	Number of Bars "M"
ICD05-XXX	4
ICD10-XXX	7

IC11 Performance Data

Ironcore Non-Cooled Motors Series

Rated Perfomance	Symbol	Units	IC11	-030	IC11	-050	IC11	-075	IC11	-100	IC11	-150	IC11	-200
0.45	_	N	32	20	50	33	8	00	10	167	16	00	21	35
Peak Force	Fp	lbf	71	.9	12	20	18	30	24	40	36	60	48	30
0 1 5 07 11	_	N	14	14	26	63	4	13	57	74	861		1197	
Continuous Force @ Tmax (1)	Fc	lbf	32	2.4	59	3.1	92	2.8	12	29	19	94	26	69
Motor Constant @ 25°C	Km	N/√W	22	2.5	32	2.0	4	1.4	49	9.1	62	2.0	73	3.0
		E	lectric	al Spe	ecifica	tions (2)							
		Winding Code	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5	A1	A5
Peak Current	lp	Arms	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1	11.3	19.1
Continuous Current @Tmax	lc	Arms	4.0	6.9	4.4	7.6	4.6	8.0	4.8	8.2	4.8	8.3	5.0	8.6
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	1.9	0.63	2.6	0.87	3.5	1.2	4.4	1.5	6.2	2.1	8.0	2.7
Electrical Inductance ±20%	L	mh L-L	16.7	5.6	26.7	8.9	39.4	13.1	52.0	17.3	77.3	25.8	103	34.2
Back EMF Constant @25°C±10%	Ke	Vpeak/m/s L-L Vpeak/in/sec L-L	30.9 0.78	17.8 0.45	51.4 1.30	29.7 0.75	77.1 1.96	44.5 1.13	103 2.61	59.3 1.51	154 3.92	89.0 2.26	206 5.22	119 3.02
F 0	IX.C	N/Arms	37.8	21.8	62.9	36.3	94.4	54.5	126	72.7	189	109	252	145
Force Constant @ 25°C±10%	Kf	lbf/Arms	8.5	4.9	14.1	8.2	21.2	12.3	28.3	16.3	42.4	24.5	56.6	32.7
		I	Mecha	nical S	Specifi	cation	IS							
Coil Assembly Weight ±15%	Mc	kg	2.5		3.6		5.0		6.5		9.4		12.3	
Coll Assembly Weight ±10%	IVIC	lbs	5	.5	7.	9	11	1.0	14	1.3	20).7	27	7.1
Magnetic Way Type			MC	030	MC	050	MC	075	MC	100	MC	150	MC	200
Magnetic Way	Mw	kg/m	5	.4	7.	5	10	0.1	12	2.7	20).7	26	6.8
Weight ±15%	IVIVV	lbs/in	0.3	30	0.	42	0.	56	0.	71	1.	16	1.	50
		Figur	es of N	/lerit a	nd Add	litiona	l Data							
Electrical TimeConstant	Te	ms	8	.8	10	.3	11	1.3	11	.8	12	2.5	12	2.8
Max.Theoretical Acceleration(3)	Amax	g's	15	i.3	17	.7	19	9.2	19	9.6	20).3	20).7
Magnetic Attraction	Fa	kN	1.	.4	2	.4	3	.7	4	.9	7.	.3	9	.9
Magnetic Attraction	Га	lbf	32	24	54	16	8	21	11	02	16	39	22	14
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	1.1	64	0.99		0.99 0.67		0.50		0.35		0.	25
Max. Allowable Coil Temp. (4)	Tmax	°C	13	30	13	30	1:	30	13	30	13	30	13	30

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC11 Outline Drawings

Ironcore Non-Cooled Motors Series

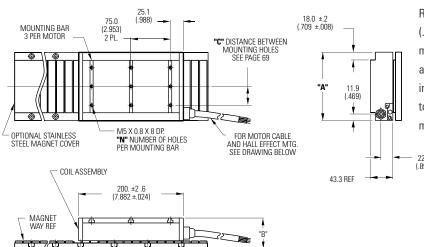
Type

IC11-030

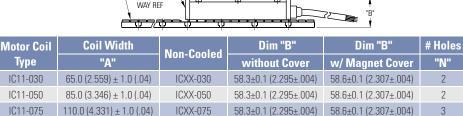
IC11-050

IC11-075

IC11-100


IC11-150

IC11-200


 $135.0(5.315) \pm 1.0(.04)$

185.0 (7.283) ± 1.0 (.06)

235.0 (9.252) ± 1.0 (.06)

Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

58.3±0.1 (2.295±.004)

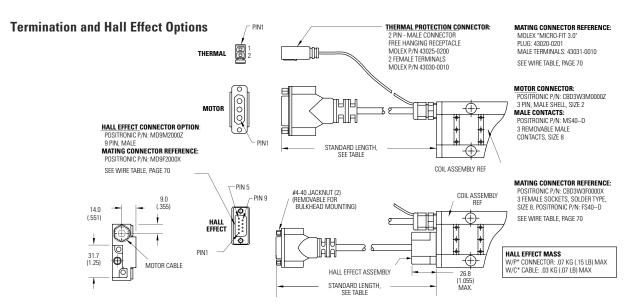
60.3±0.1 (2.374±.004)

60.3±0.1 (2.374±.004)

58.6±0.1 (2.307±.004)

60.6±0.1 (2.386±.004)

60.6±0.1 (2.386±.004)


ICXX-100

ICXX-150

ICXX-200

3

- Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)

Connector Option					
Connector	Length				
P1	400 (16)				
P2	200 (8)				
P3	100 (4)				
P4	1200 (48)				

Flying Lead Option					
Length					
400 (16)					
200 (8)					
100 (4)					
1200 (48)					

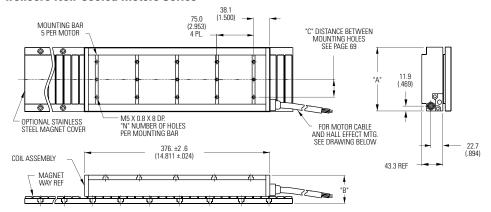
Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

IC22 Performance Data

Ironcore Non-Cooled Motors Series

Rated Perfomance	Symbol	Units		I C22 -030			IC22-050			IC22-075	
Peak Force	Fn	N		624		1039				1558	
Реак гогсе	Fp	lbf	140		234			350			
Continuous Force @ Tmax (1)	Fc	N		280			526		825		
Continuous Force & Finax (1)	16	lbf		62.9			118		185		
Motor Constant @ 25°C	Km	N/√W		31.4			44.8		58.0		
		Electr	ical Spe	cificati	ons (2)						
		Winding Code	A1	A2	A6	A1	A2	A6	A1	A2	A6
Peak Current	lp	Arms	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1
Continuous Current @Tmax	lc	Arms	3.9	7.9	13.7	4.4	8.7	15.1	4.6	9.2	15.9
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	3.9	1.0	0.33	5.3	1.3	0.44	7.1	1.8	0.59
Electrical Inductance ±20%	L	mH L-L	33.4	8.4	2.8	53.4	13.4	4.5	78.9	19.7	6.6
Back EMF Constant	Ke	Vpeak/m/s L-L	61.7	30.9	17.8	13	51.4	29.7	154	77.1	44.5
@ 25°C±10%	ING.	Vpeak/in/sec L-L	1.57	0.78	0.45	2.61	1.31	0.75	3.92	1.96	1.13
Force Constant	Kf	N/Arms	75.6	37.8	21.8	126	63.0	36.3	189	94.4	54.5
@ 25°C±10%	Ki	lbf/Arms	17.0	8.5	4.9	28.3	14.2	8.2	42.4	21.2	12.3
		Mech	anical S	Specific	ations						
Coil Assembly Weight ±15%	Mc	kg		4.8		6.9		9.6			
		lbs		10.6		15.2			21.2		
Magnetic Way Type				MC030			MC050			MC075	
Magnetic Way Weight ±15%	Mw	kg/m		5.4			7.5			10.1	
		lb/in Figures of	Morit o	0.30	ional D	nt o	0.42			0.56	
Electrical Time Constant	Te	ms	wierit a		.iviidi D	ald	10.1			11.1	
Max.Theoretical Acceleration(3)	Amax	g's	8.6			18.5			19.9		
Max. Medietical Acceleration(3)	Alliax	y s kN	15.9 2.9			4.9			7.3		
Magnetic Attraction	Fa	lbf	654		1090			1637			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.82		0.50			0.34			
Max. Allowable Coil Temp. (4)	Tmax	°C		130		130			130		

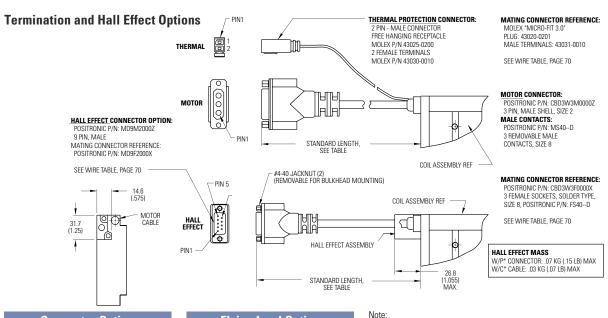
- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.


Rated Perfomance	Symbol	Units		IC22-100			IC22-150)		IC22-200	
Peak Force	Γn	N		2077		3117				4156	
reak fuice	Fp	lbf	467		701			934			
Continuous Force @ Tmax (1)	Fc	N		1148			1723		2393		
Continuous Force @ Finax (1)	16	lbf		258			387		538		
Motor Constant @ 25°C	Km	N/√W		69.5			87.8			103	
		Electr	ical Spe		ons (2)						
		Winding Code	A1	A2	A 6	A1	A2	A6	A1	A2	A6
Peak Current	lp	Arms	11.0	22.0	38.1	11.0	22.0	38.1	11.0	22.0	38.1
Continuous Current @Tmax	lc	Arms	4.8	9.5	16.5	4.8	9.6	16.6	5.0	10.0	17.3
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	8.8	2.2	0.73	12.4	3.1	1.0	15.9	4.0	1.3
Electrical Inductance ±20%	L	mH L-L	104	26.0	8.7	155	38.7	12.9	205	51.3	17.1
Back EMF Constant	Ke	Vpeak/m/s L-L	206	103	59.3	308	154	89.0	411	206	119
@ 25°C±10%	IV.G	Vpeak/in/sec L-L	5.22	2.61	1.51	7.83	3.92	2.26	10.4	5.22	3.02
Force Constant	Kf	N/Arms	252	126	72.7	378	189	109	504	252	145
@ 25°C±10%	Ki	lbf/Arms	56.6	28.3	16.3	84.9	42.5	24.5	113	56.6	32.7
		Mech	anical S	Specific	ations						
Coil Assembly Weight ±15%	Mc	kg	kg 12.5		18.1		23.7				
		lbs		27.6		39.9			52.2		
Magnetic Way Type				MC100			MC150			MC200	
Magnetic Way Weight ±15%	Mw	kg/m		12.7			20.7			26.8	
		lb/in	B.H uit	0.71	:I D	4.	1.16			1.50	
Floatical Time Constant	т.	Figures of	ivierit a		ionai Da	ata	10 F			10.0	
Electrical Time Constant	Te	ms c'a	11.8			12.5			12.9		
Max.Theoretical Acceleration (3)	Amax	g's	20.4			21.1			21.5		
Magnetic Attraction	Fa	kN Ibf	9.8			14.6 3271			19.7 4433		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	2205 0.25				0.13				
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130		

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC22 Series Outline Drawings

Ironcore Non-Cooled Motors Series

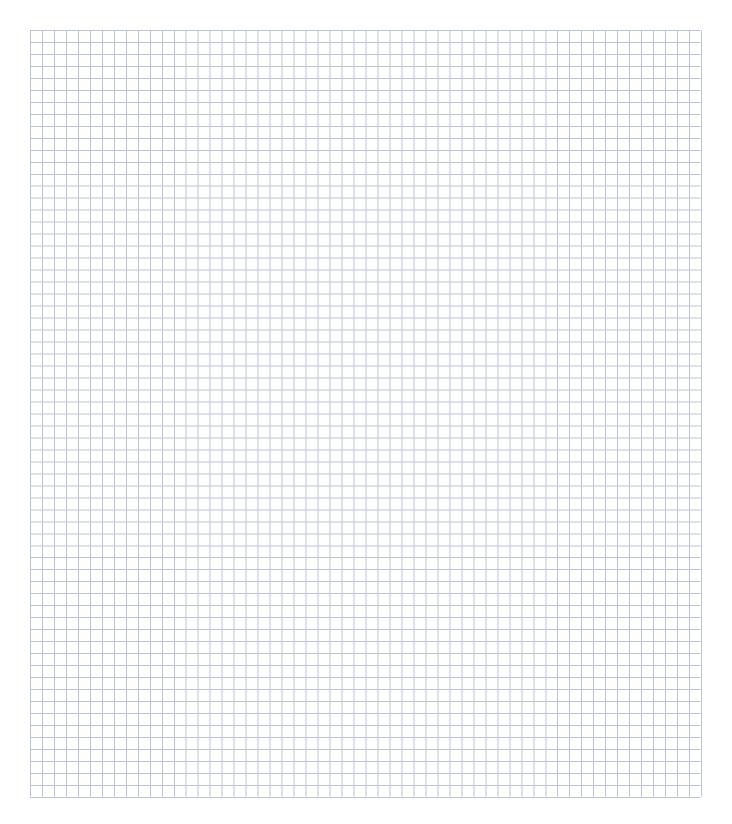


Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Motor Coil	Coil Width	Non-Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Mon-Coolea	without Cover	w/ Magnet Cover	"N"
IC22-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC22-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

Notes:

- Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)



Connector Option						
Connector	Length					
P1	400 (16)					
P2	200 (8)					
P3	100 (4)					
P4	1200 (48)					

Flying Lead Option					
Leads	Length				
C1	400 (16)				
C2	200 (8)				
C3	100 (4)				
C4	1200 (48)				

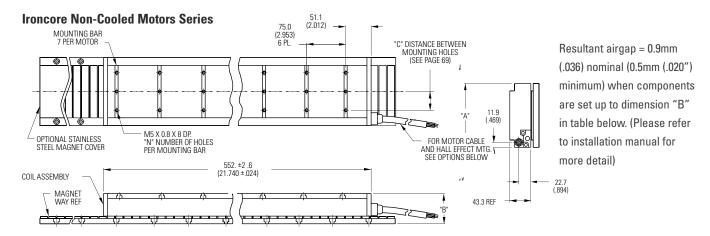
Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

IC33 Performance Data

Ironcore Non-Cooled Motors Series

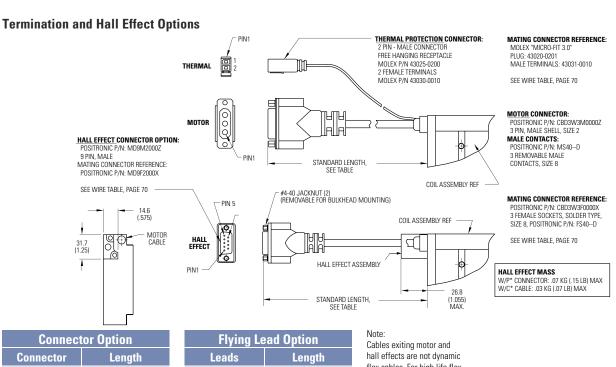
Rated Perfomance	Symbol	Units		IC33	-030			IC33	-050		IC33-075				
	_	N	944				15	72			23	58			
Peak Force	Fp	lbf	212				35	53		530					
0 1 5 07 (1)	_	N		43	31			78	39		1238				
Continuous Force @ Tmax (1)	Fc	lbf		96	6.9		177				278				
Motor Constant @ 25°C	Km	N/√W		38	3.5			55	5.0		71.2				
		Ele	ctrica	Spec	ificatio	ons (2)									
		Winding Code	A1	A3	A5	A7	A1	A3	A5	A7	A1	A3	A5	A7	
Peak Current	lp	Arms	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	
Continuous Current @Tmax	lc	Arms	4.0	11.9	6.9	20.6	4.4	13.1	7.6	22.7	4.6	13.8	8.0	23.9	
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	5.8	0.64	1.9	0.21	7.9	0.88	2.6	0.29	10.6	1.2	3.5	0.39	
Electrical Inductance ±20%	L	mh L-L	50.1	5.6	16.7	1.9	80.2	8.9	26.7	3.0	118	13.1	39.4	4.4	
Back EMF Constant	V-	Vpeak/m/s L-L	92.6	30.9	53.5	17.8	154	51.4	89.0	29.7	231	77.1	134	44.5	
@25°C±10%	Ke	Vpeak/in/sec L-L	2.35	0.78	1.36	0.45	3.92	1.31	2.26	0.75	5.88	1.96	3.39	1.13	
Force Constant @ 25°C±10%	Kf	N/Arms	113	37.8	65.5	21.8	189	62.9	109	36.3	283	94.4	164	54.5	
Torce Constant @ 25 G±10/0	IXI	lbf/Arms	25.5	8.5	14.7	4.9	42.4	14.1	24.5	8.2	63.7	21.2	36.8	12.3	
		Me	chani	cal Sp	ecifica	ations									
Coil Assembly Weight ±15%	Mc	kg		7.	.3			10	1.4			14	1.4		
Coll Assembly Weight ±13 /0	IVIC	lbs		16	6.1		22.9				31.7				
Magnetic Way Type				MC	030			MC	050			MC	075		
Magnetic Way Weight ±15%	Mw	kg/m		5	.4			7.	.5			10).1		
magnotio vvay vvoigiti 210/0	10100	lbs/in		0.	30			0.	42			0.	56		
		Figures	es of Merit and Additional Data												
Electrical Time Constant	Te	ms	8.6				10	1.2			11	.2			
Max.Theoretical Acceleration(3)	Amax	g's	15.7				18	3.4			19	1.9			
Magnetic Attraction	Fa	kN	4.4			7.4				11.0					
iviagnetic Attraction	Id	lbf	991			1652				2480					
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.55			0.55 0.33				0.22					
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	30		130				

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.



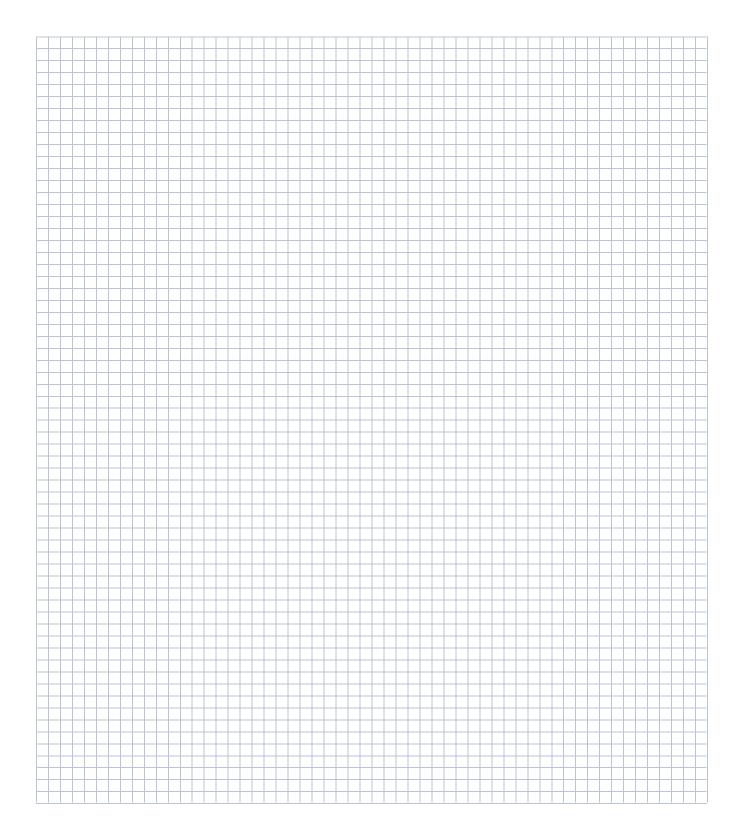
Rated Perfomance	Symbol	Units		IC33	-100		IC33-150				IC33-200				
D 1.5	_	N		31	44			47	16			62	91		
Peak Force	Fp	lbf	707			1060				1414					
0 5 (1)	_	N		17	22			25	83		3590				
Continuous Force @ Tmax (1)	Fc	lbf		38	37			58	31		807				
Motor Constant @ 25°C	Km	N/√W		85	5.1			10	18			12	27		
		Ele	ctrica	l Spec	ificati	ons (2)									
		Winding Code	A1	A3	A5	A7	A1	A3	A5	A7	A1	A3	A5	A7	
Peak Current	lp	Arms	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	11.1	33.1	19.1	57.3	
Continuous Current @Tmax	lc	Arms	4.8	14.3	8.2	24.7	4.8	14.4	8.3	24.9	5.0	14.9	8.6	25.9	
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	13.2	1.5	4.4	0.49	18.5	2.1	6.2	0.69	23.9	2.7	8.0	0.89	
Electrical Inductance ±20%	L	mh L-L	156	17.3	52.0	5.8	232	25.8	77.3	8.6	308	34.2	103	11.4	
Back EMF Constant		Vpeak/m/s L-L	308	103	178	59.3	463	154	267	89.0	617	206	356	119	
@25°C±10%	Ke	Vpeak/in/sec L-L	7.83	2.61	4.52	1.51	11.7	3.92	6.78	2.26	15.7	5.22	9.05	3.02	
F 0	IX.C	N/Arms	378	126	218	72.7	567	189	327	109	756	252	436	145	
Force Constant @ 25°C±10%	Kf	lbf/Arms	84.9	28.3	49.0	16.3	127	42.5	73.5	24.5	170	56.6	98.1	32.7	
		Me	echani	cal Sp	ecific	ations									
Coil Assembly Weight ±15%	Mc	kg		18	1.9			27	.3			35	5.7		
Cull Assembly Weight ±15%	IVIC	lbs		41	.7		60.2				78.7				
Magnetic Way Type				MC	100			MC	150			MC	200		
Magnetic Way Weight ±15%	Mw	kg/m		12	2.7			20	1.7			26	5.8		
wiagnetic way weight ±13/0	IVIVV	lbs/in		0.	71			1.1	16			1.	50		
		Figures	of Me	rit and	l Addit	ional	Data								
Electrical Time Constant	Te	ms	11.8				12	.5			12	.9			
Max.Theoretical Acceleration(3)	Amax	g's	20.2				21	.0			21	.4			
Magnetic Attraction	Fa	kN	14.7				22	2.1			29	9.4			
Magnetic Attraction	T a	lbf	3305			4957				6609					
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.	17		0.12				0.084				
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	80		130				

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.


IC33 Series Outline Drawings

Motor Coil	Coil Width	Non-Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Mon-Coolea	without Cover	w/ Magnet Cover	"N"
IC33-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC33-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

- Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)



Connector Uption								
Length								
400 (16)								
200 (8)								
100 (4)								
1200 (48)								

Flying Lead Option								
Leads	Length							
C1	400 (16)							
C2	200 (8)							
C3	100 (4)							
C4	1200 (48)							

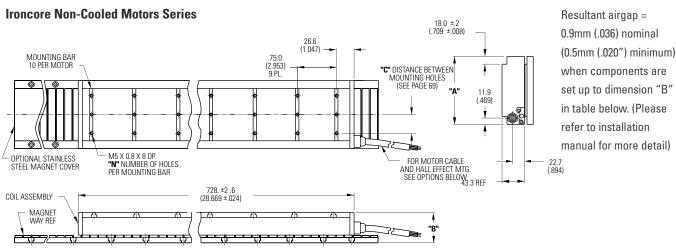
flex cables. For high life flex extension cables, see page 72

IC44 Performance Data

Ironcore Non-Cooled Motors Series

Rated Perfomance	Symbol	Units		IC44	-030			IC44	-050		IC44-075				
		N		1259				20	96			31	44		
Peak Force	Fp	lbf	283				4	71			70	07			
0 .: 5 (4)	-	N		56	60		1053				1651				
Continuous Force @ Tmax (1)	Fc	lbf		12	26		237				371				
Motor Constant @ 25°C	Km	N/√W		44	1.3			63	3.3		82.4				
		Ele	ctrica	l Speci	ificatio	ons (2)									
		Winding Code	A1	A2	A3	A7	A1	A2	A3	A7	A1	A2	A3	A7	
Peak Current	lp	Arms	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	
Continuous Current @Tmax	lc	Arms	3.9	7.9	15.8	27.3	4.4	8.7	17.4	30.2	4.6	9.2	18.3	31.8	
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	7.8	2.0	0.49	0.16	10.6	2.7	0.66	0.22	14.1	3.5	0.88	0.29	
Electrical Inductance ±20%	L	mh L-L	66.8	16.7	4.2	1.4	107	26.7	6.7	2.2	158	39.4	9.9	3.3	
Back EMF Constant	Ke	Vpeak/m/s L-L	123	61.7	30.9	17.8	206	103	51.4	29.7	308	154	77.1	44.5	
@25°C±10%	Ve	Vpeak/in/sec L-L	3.14	1.57	0.78	0.45	5.22	2.61	1.31	0.75	7.83	3.92	1.96	1.13	
Force Constant @ 25°C±10%	Kf	N/Arms	151	75.6	37.8	21.8	252	126	63.0	36.3	378	189	94.4	54.5	
Torce Constant © 25 G±10/0	KI	lbf/Arms	34.0	17.0	8.5	4.9	56.6	28.3	14.2	8.2	84.9	42.5	21.2	12.3	
		Ме	chani	cal Sp	ecifica	ations									
Coil Assembly Weight ±15%	Mc	kg		9	.6			13	3.9			19	1.2		
Con Assembly Weight ±13/0	IVIC	lbs		21	1.2		30.6					42	2.3		
Magnetic Way Type				MC	030			MC	050			MC	075		
Magnetic Way Weight ±15%	Mw	kg/m		5	.4			7	.5			10).1		
magnetic way weight ±13/0	IVIVV	lbs/in		0.	30			0.	42			0.	56		
		Figures	of Merit and Additional Data				Data								
Electrical Time Constant	Te	ms	8.6				10).1			11	.2			
Max.Theoretical Acceleration(3)	Amax	g's	15.9				18	3.3			19	1.9			
Magnetic Attraction	Fa	kN	5.9			9.8				14.7					
Maynetic Attraction	Id	lbf	1322			2203					33	05			
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.41			0.41 0.25			0.17						
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	30		130				

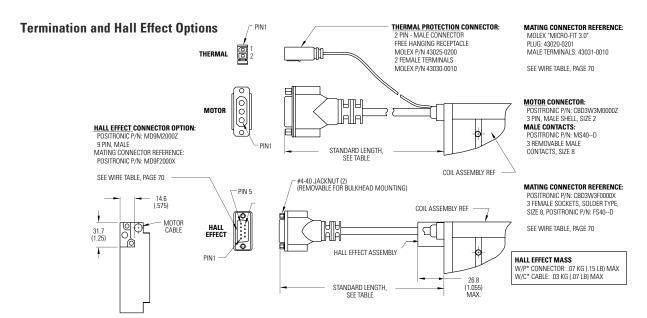
- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.



Rated Perfomance	Symbol	Units		IC44	-100			IC44	-150		IC44-200				
5 4 5	_	N		4192				62	89			8	388		
Peak Force	Fp	lbf	942				14	14			18	885			
O .: 5 @T /4)	_	N		22	96			34	45		4786				
Continuous Force @ Tmax (1)	Fc	lbf		5	16			77	74		1076				
Motor Constant @ 25°C	Km	N/√W		98	3.3		124				146				
		Elec	ctrical	Speci	ficatio	ns (2)									
		Winding Code	A1	A2	A3	A7	A1	A2	A3	A7	A1	A2	A3	A7	
Peak Current	lp	Arms	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	11.1	22.1	44.1	76.4	
Continuous Current @Tmax	lc	Arms	4.8	9.5	19.0	33.0	4.8	9.6	19.2	33.2	5.0	10.0	20.0	34.6	
ElextricalResistance @ 25°C±10%	Rm	Ohms L-L	17.6	4.4	1.1	0.37	24.7	6.2	1.5	0.51	31.8	8.0	2.0	0.66	
Electrical Inductance ±20%	L	mh L-L	208	52.1	13.0	4.3	309	77.4	19.3	6.4	410	103	25.7	8.6	
Back EMF Constant	Ke	Vpeak/m/s L-L	411	206	103	59.3	617	308	154	89.0	823	411	206	119	
@25°C±10%	KE	Vpeak/in/sec L-L	10.4	5.22	2.61	1.51	15.7	7.83	3.92	2.26	20.9	10.4	5.22	3.02	
Force Constant @ 25°C±10%	Kf	N/Arms	504	252	126	72.7	755	378	189	109	1008	504	252	145	
		lbf/Arms	113	56.6	28.3	16.3	170 84.9 42.5 24.5				227	113	56.6	32.7	
		Me	chanic	al Sp	ecifica	tions									
Coil Assembly Weight ±15%	Mc	kg		25	5.0			36	6.2			4	7.4		
		lbs		55	5.1		79.8				104				
Magnetic Way Type				MC	100			MC	150			M	C200		
Magnetic Way Weight ±15%	Mw	kg/m		12	2.7			20).7			2	6.8		
magnotio vvay vvoigne 21070	10100	lbs/in		0.	71			1.	16			1	.50		
		Figures	of Me	rit and	Additi	onal D	ata								
Electrical Time Constant	Te	ms	11.8				12	2.5			1	2.9			
Max.Theoretical Acceleration(3)	Amax	g's	20.4				21	1.1			2	1.5			
Magnetic Attraction	Fa	kN	19.6				29	3.4		39.4					
Maynetic Attraction	Id	lbf	4406			6609				8858					
Thermal Resistance (coils to external structure)	Rth	°C/Watt	0.13			0.088			0.063						
Max. Allowable Coil Temp. (4)	Tmax	°C		13	30			13	30		130				

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

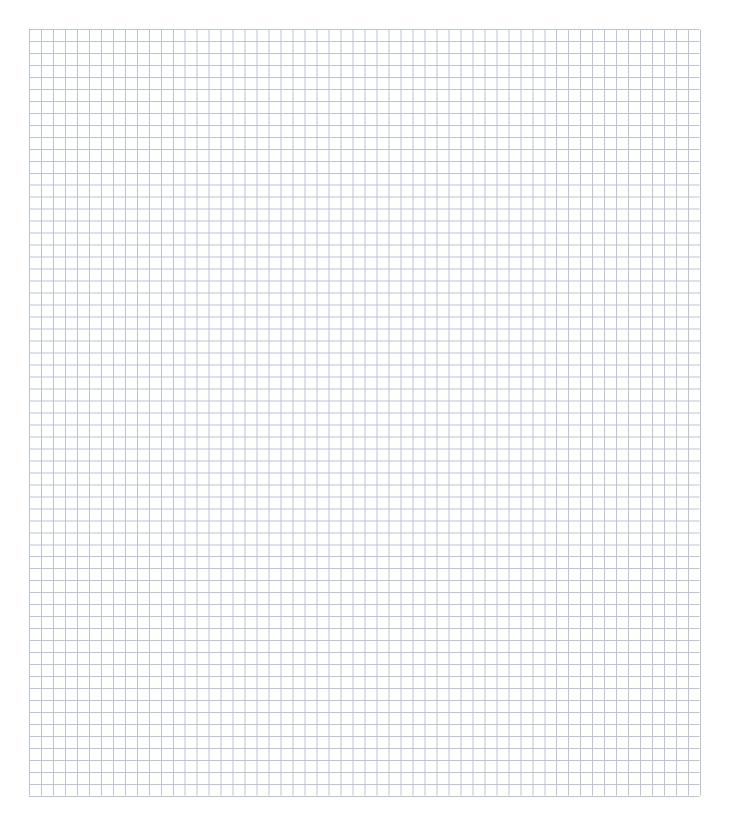
IC44 Series Outline Drawings



Motor Coil	Coil Width	Non-Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Mon-Coolea	without Cover	w/ Magnet Cover	"N"
IC44-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC44-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

Notes:

- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3) X decimal place ±0.1 (.004) XX decimal place ±0.05 (0.002)



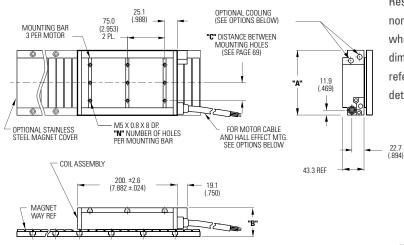
Connector Option								
Connector	Length							
P1	400 (16)							
P2	200 (8)							
P3	100 (4)							
P4	1200 (48)							

Flying Lead Option								
Length								
400 (16)								
200 (8)								
100 (4)								
1200 (48)								

Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

IC11 Performance Data

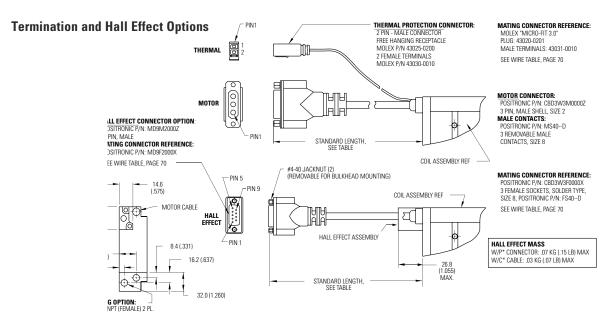
Ironcore Water-Cooled Motors Series


Rated Perfomance	Symbol	Units	IC11	-030	IC11-050		IC11-075		IC11-100		IC11-150		IC11-200		
D 1 F	_	N	31	15	52	25	79	98	10	51	15	76	2102		
Peak Force	Fp	lbf	70	70.8		118		179		36	35	54	47	' 3	
0 .: 5 (4)	-	N	25	254		432		649		864		1285		12	
Continuous Force @ Tmax (1)	Fc	lbf	57	7.1	97	'.1	146		194		289		385		
Motor Constant @ 25°C	Km	N/√W	19	1.3	28	.6	37	'.3	45	5.0	55	5.7	65	5.7	
			lectric	al Spe	ecifica	tions (2)								
		Winding Code	A1	A5											
Peak Current	lp	Arms	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	13.8	23.9	
Continuous Current @Tmax	lc	Arms	9.7	16.9	9.9	17.2	9.9	17.1	9.9	17.2	9.8	17.0	9.8	17.0	
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	1.6	0.53	2.1	0.70	2.8	0.93	3.5	1.2	5.0	1.7	6.4	2.1	
Electrical Inductance ±20%	L	mh L-L	10.3	3.4	16.5	5.5	24.4	8.1	32.1	10.7	47.7	15.9	63.3	21.1	
Back EMF Constant	I/ =	Vpeak/m/s L-L	24.8	14.3	41.4	23.9	62.2	35.9	82.9	47.8	124	71.7	166	95.7	
@25°C±10%	Ke	Vpeak/in/sec L-L	0.63	0.36	1.05	0.61	1.58	0.91	2.11	1.22	3.16	1.82	4.21	2.43	
Force Constant @ 25°C±10%	Kf	N/Arms	30.4	17.6	50.7	29.3	76.2	44.0	102	58.6	152	87.9	203	117	
10100 001101diff @ 20 0±10/0	IXI	lbf/Arms	6.8	3.9	11.4	6.6	17.1	9.9	22.8	13.2	34.2	19.8	45.7	26.4	
			Mecha	nical S	Specifi	cation	s								
Coil Assembly Weight ±15%	Mc	kg	2.	.5	3.6		5	.0	6	.5	9	.4	12	.3	
Coll Assembly Weight ±10 /0	IVIC	lbs	5.	.5	7.9		11.0		14.3		20.7		27	'.1	
Magnetic Way Type			MC	030	MC	050	MC075		MC100		MC150		MC200		
Magnetic Way Weight±15%	Mw	kg/m	5.	.4	7.	5	10.1		12.7		20.7		26.8		
way weight 13/0	IVIVV	lbs/in	0.3	30	0.4	42	0.	56	0.	71	1.	16	1.5	50	
		Figur	es of N	lerit a	nd Add	litiona	l Data								
Electrical TimeConstant	Te	ms	6.	.4	7.	9	8	.7	9	.2	9	.5	9.	.9	
Max.Theoretical Acceleration(3)	Amax	g's	15	.3	17	.7	19	.2	19	0.6	20).3	20).7	
Magnetic Attraction	Fa	kN	1.4		2.	4	3	.7	4	.9	7.	.3	9.	.9	
Magnetic Attraction	Гd	lbf	324		54	16	82	21	11	02	16	39	22	14	
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt	0.33		00	24	0.	18	0.15		0.10		0.081		
Max. Allowable Coil Temp. (4)	Tmax	°C	13	30	13	80	130		130		130		130		
Min. Flow Rate of Coolant at a Max. Temperature of 25°C		liters/min.	2.	.8	2.	8	2.	8	2.8		2.8		2.8		

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC11 Outline Drawings

Ironcore Water-Cooled Motors Series


Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Motor Coil Coil Width # Holes Dim "B" Cooled without Cover Type w/ Magnet Cover IC11-030 $65.0(2.559) \pm 1.0(.04)$ ICXX-030 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004) IC11-050 $85.0(3.346) \pm 1.0(.04)$ ICXX-050 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004) IC11-075 $110.0(4.331) \pm 1.0(.04)$ ICXX-075 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004) IC11-100 $135.0(5.315) \pm 1.0(.04)$ ICXX-100 58.3±0.1 (2.295±.004) 58.6±0.1 (2.307±.004) ICXX-150 IC11-150 $185.0(7.283) \pm 1.0(.06)$ 60.3±0.1 (2.374±.004) 60.6±0.1 (2.386±.004)

ICXX-200

Notes:

- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified:
 no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)

60.3±0.1 (2.374±.004)

60.6±0.1 (2.386±.004)

Connector Option								
Connector	Length							
P1	400 (16)							
P2	200 (8)							
P3	100 (4)							
P4	1200 (48)							

IC11-200

235.0 (9.252) ± 1.0 (.06)

C1	400 (16)
C2	200 (8)
C3	100 (4)
C4	1200 (48)

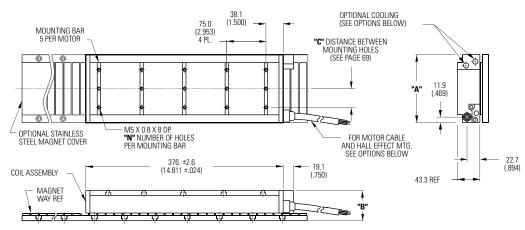
Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

IC22 Performance Data

Ironcore Water-Cooled Motors Series

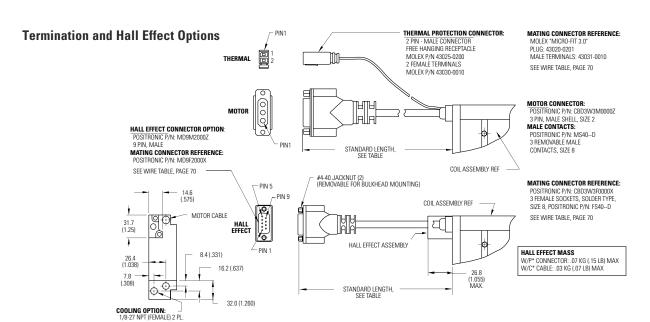
Rated Perfomance	Symbol	Units		IC22-030			IC22-050)		IC22-075		
2.15	_	N		630			1051			1576		
Peak Force	Fp	lbf		142		236				354		
0 .: 5 @ 7 (4)	E	N		519		864			1284			
Continuous Force @ Tmax (1)	Fc	lbf		117			194		287			
Motor Constant @ 25°C	Km	N/√W		28.3		40.5			52.2			
		Electr	ical Spe	cificati	ons (2)							
		Winding Code	A1	A2	A6	A1	A2	A 6	A1	A2	A6	
Peak Current	lp	Arms	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8	
Continuous Current @Tmax	lc	Arms	9.9	19.8	34.3	9.9	19.8	34.3	9.8	19.6	34.0	
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	3.1	0.78	0.26	4.2	1.1	0.35	5.7	1.4	0.48	
Electrical Inductance ±20%	L	mH L-L	20.6	5.2	1.7	33.0	8.3	2.8	48.6	12.2	4.1	
Back EMF Constant	17	Vpeak/m/s L-L	49.7	24.9	14.4	82.9	41.4	23.9	124	62.2	35.9	
@ 25°C±10%	Ke	Vpeak/in/sec L-L	1.26	0.63	0.36	2.11	1.05	0.61	3.16	1.58	0.91	
Force Constant	I/C	N/Arms	60.9	30.5	17.6	102	50.8	29.3	152	76.2	44.0	
@ 25°C±10%	Kf	lbf/Arms	13.7	6.8	4.0	22.8	11.4	6.6	34.2	17.1	9.9	
		Mech	anical S	Specific	ations							
Coil Accombly Weight + 1ED/	Mc	kg	4.8		6.9			9.6				
Coil Assembly Weight ±15%	IVIC	lbs		10.6			15.2		21.2			
Magnetic Way Type				MC030			MC050			MC075		
Magnetic Way Weight ±15%	Mw	kg/m		5.4			7.5			10.1		
Waynetic way weight ±15 /0	IVIVV	lb/in		0.30			0.42			0.56		
		Figures of	Merit a	nd Addit	ional D	ata						
Electrical Time Constant	Te	ms		6.6			7.9			8.5		
Max.Theoretical Acceleration (3)	Amax	g's		15.9			18.5			19.9		
Magnetic Attraction	Fa	kN		2.9			4.9			7.3		
Magnetic Attraction	Ta	lbf		654			1090			1637		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.16			0.12		0.091			
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130			
Min. Flow Rate of Coolant at a Max. Temperature of 25°C		liters/min.		2.8		2.8		2.8				

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.


Rated Perfomance	Symbol	Units		IC22-100		IC22-150			IC22-200			
Peak Force	Fn	N		2106			3152			4204		
Реак гогсе	Fp	lbf		473		709			945			
Continuous Force @ Tmov (1)	Fc	N		1715		2566			3458			
Continuous Force @ Tmax (1)	FU	lbf		386			577		777			
Motor Constant @ 25°C	Km	N/√W		62.5			79.3			93.3		
		Electr	ical Spe	ecificati	ons (2)							
		Winding Code	A1	A2	A6	A1	A2	A 6	A1	A2	A 6	
Peak Current	lp	Arms	13.8	27.6	47.8	13.8	27.6	47.8	13.8	27.6	47.8	
Continuous Current @Tmax	lc	Arms	9.8	19.6	34.0	9.8	19.7	34.1	9.9	19.8	34.3	
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	7.1	1.8	0.59	9.9	2.5	0.83	12.7	3.2	1.1	
Electrical Inductance ±20%	L	mH L-L	64.1	16.0	5.3	95.4	23.9	8.0	127	31.6	10.5	
Back EMF Constant	Ke	Vpeak/m/s L-L	166	83.1	48.0	249	124	71.8	332	166	95.7	
@ 25°C±10%	Ke	Vpeak/in/sec L-L	4.22	2.11	1.22	6.32	3.16	1.82	8.42	4.21	2.43	
Force Constant	Kf	N/Arms	203	102	58.7	305	152	87.9	406	203	117	
@ 25°C±10%	NI	lbf/Arms	45.7	22.9	13.2	68.5	34.2	19.8	91.3	45.7	26.4	
		Mech	anical S	Specific	ations							
Coil Assembly Weight ±15%	Mc	kg	12.5		18.1			23.7				
Coll Assembly Weight ±15%	IVIC	lbs		27.6		39.9			52.2			
Magnetic Way Type				MC100			MC150			MC200		
Magnetic Way Weight ±15%	Mw	kg/m		12.7			20.7			26.8		
magnotio viay violght 210 /0	10100	lb/in		0.71			1.16			1.50		
		Figures of	Merit a	nd Addit	ional D	ata						
Electrical Time Constant	Te	ms		9.0			9.6			10.0		
Max.Theoretical Acceleration (3)	Amax	g's		20.4			21.1			21.5		
Magnetic Attraction	Fa	kN		9.8			14.6			19.7		
		lbf		2205			3271			4433		
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.073		0.052			0.040			
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130			
Min. Flow Rate of Coolant at a Max. Temperature of 25°C		liters/min.		2.8			2.8		2.8			

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

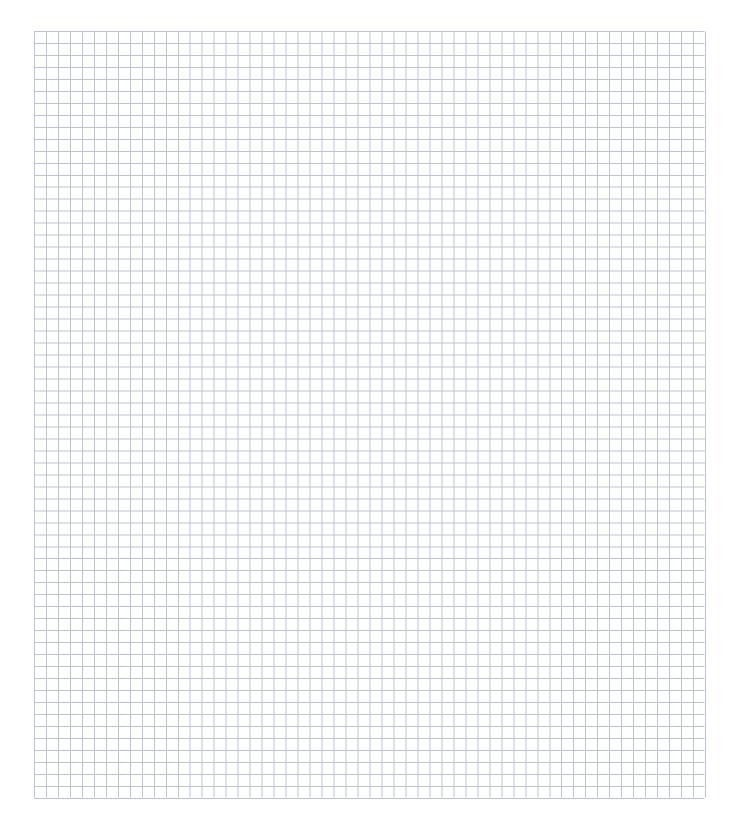
IC22 Outline Drawings


Ironcore Water-Cooled Motors Series

Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for more detail)

Motor Coil	Coil Width	Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Coolea	without Cover	w/ Magnet Cover	"N"
IC22-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC22-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC22-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC22-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

- 1. Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)



Connect	Connector Option								
Connector	Length								
P1	400 (16)								
P2	200 (8)								
P3	100 (4)								
P4	1200 (48)								

C1	400 (16)
C2	200 (8)
C3	100 (4)
C4	1200 (48)

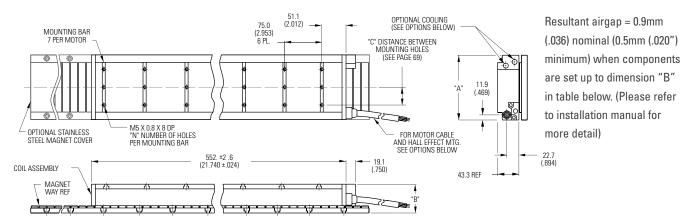
Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

IC33 Performance Data

Ironcore Water-Cooled Motors Series

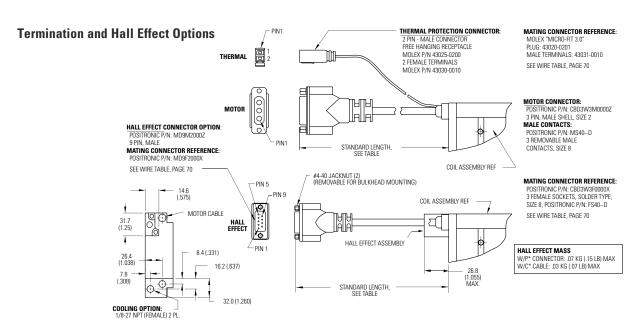
Rated Perfomance	Symbol	Units		IC33-030			IC33-050		IC33-075		
Deals From	F	N		945		1575				2365	
Peak Force	Fp	lbf		212		354				532	
Continuous Farra @ Taran (1)	F.	N	769			1283			1926		
Continuous Force @ Tmax (1)	Fc	lbf		173			288		433		
Motor Constant @ 25°C	Km	N/√W		34.5		49.2			64.2		
		Electr	ical Spe	ecificati	ons (2)						
		Winding Code	A1	A3	A5	A1	A3	A5	A1	A3	A5
Peak Current	lp	Arms	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9
Continuous Current @Tmax	lc	Arms	9.8	29.5	17.0	9.8	29.4	17.0	9.8	29.4	17.0
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	4.7	0.52	1.6	6.4	0.71	2.1	8.5	0.94	2.8
Electrical Inductance ±20%	L	mH L-L	31.0	3.4	10.3	49.5	5.5	16.5	73.1	8.1	24.4
Back EMF Constant	IV -	Vpeak/m/s L-L	74.5	24.8	43.0	124	41.4	71.7	187	62.2	108
@ 25°C±10%	Ke	Vpeak/in/sec L-L	1.89	0.63	1.09	3.16	1.05	1.82	4.74	1.58	2.74
Force Constant	Kf	N/Arms	91.3	30.4	52.7	152	50.7	87.9	229	76.2	132
@ 25°C±10%	NI	lbf/Arms	20.5	6.8	11.9	34.2	11.4	19.8	51.4	17.1	29.7
		Mech	anical S	Specific	ations						
Coil Assembly Weight ±15%	Mc	kg	7.3		10.4			14.4			
Con Assembly Weight ±13 /6	IVIC	lbs		16.1		22.9				31.7	
Magnetic Way Type				MC030			MC050			MC075	
Magnetic Way Weight ±15%	Mw	kg/m		5.4			7.5			10.1	
Magnetic Way Weight 113/0	IVIVV	lb/in		0.30			0.42			0.56	
		Figures of	Merit a	nd Addi	tional D	ata					
Electrical Time Constant	Te	ms		6.6			7.7			8.6	
Max.Theoretical Acceleration (3)	Amax	g's		15.7			18.4			19.9	
Magnetic Attraction	Fa	kN		4.4			7.4			11.0	
Magnetic Attraction	Ta	lbf		991			1652			2480	
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.11		0.081			0.061		
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130		
Min. Flow Rate of Coolant at a Max. Temperature of 25°C		liters/min.		2.8		2.8		2.8			

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.


Rated Perfomance	Symbol	Units		IC33-100		IC33-150			IC33-200		
D 1.5	_	N		3152			4724			6306	
Peak Force	Fp	lbf		709		1063				1418	
Continuous Forms @ Tonou (1)	Γ.	N		2593		3849			5135		
Continuous Force @ Tmax (1)	Fc	lbf		583		865			1154		
Motor Constant @ 25°C	Km	N/√W		76.5		96.9			114		
Max. Cont. Power Dissipation	Pc	W		2188		3000			3889		
		Electri	ical Spe	cificati	ons (2)						
		Winding Code	A1 A3 A5			A1	А3	A5	A1	А3	A5
Peak Current	lp	Arms	13.8	41.4	23.9	13.8	41.4	23.9	13.8	41.4	23.9
Continuous Current @Tmax	lc	Arms	9.9	29.7	17.1	9.8	29.3	16.9	9.8	29.5	17.0
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	10.6	1.2	3.5	14.9	1.7	5.0	19.1	2.1	6.4
Electrical Inductance ±20%	L	mH L-L	96.2	10.7	32.1	143	15.9	47.7	190	21.1	63.3
Back EMF Constant	Ke	Vpeak/m/s L-L	249	82.9	144	373	124	215	497	166	287
@ 25°C±10%	KE	Vpeak/in/sec L-L	6.32	2.11	3.65	9.47	3.16	5.47	12.6	4.21	7.30
Force Constant	Kf	N/Arms	304	102	176	457	152	264	609	203	352
@ 25°C±10%	NI	lbf/Arms	68.5	22.8	39.5	103	34.2	59.3	137	45.7	79.1
		Mech	anical S	Specific	ations						
Coil Assembly Weight ±15%	Mc	kg		18.9			27.3			35.7	
Coll Assembly Weight ±1370	IVIC	lbs		41.7		60.2			78.7		
Magnetic Way Type				MC100			MC150			MC200	
Magnetic Way Weight ±15%	Mw	kg/m		12.7			20.7			26.8	
magnotio tray troight 210/0	10100	lb/in		0.71			1.16			1.50	
		Figures of	Merit a	nd Addit	ional D	ata					
Electrical Time Constant	Te	ms		9.1			9.6			9.9	
Max.Theoretical Acceleration (3)	Amax	g's		20.2			21.0			21.4	
Magnetic Attraction	Fa	kN		14.7			22.1			29.4	
	Tu	lbf		3305			4957			6609	
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.048		0.035			0.027		
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130		
Min. Flow Rate of Coolant at a Max. Temperature of 25°C		liters/min.		2.8		2.8			2.8		

- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

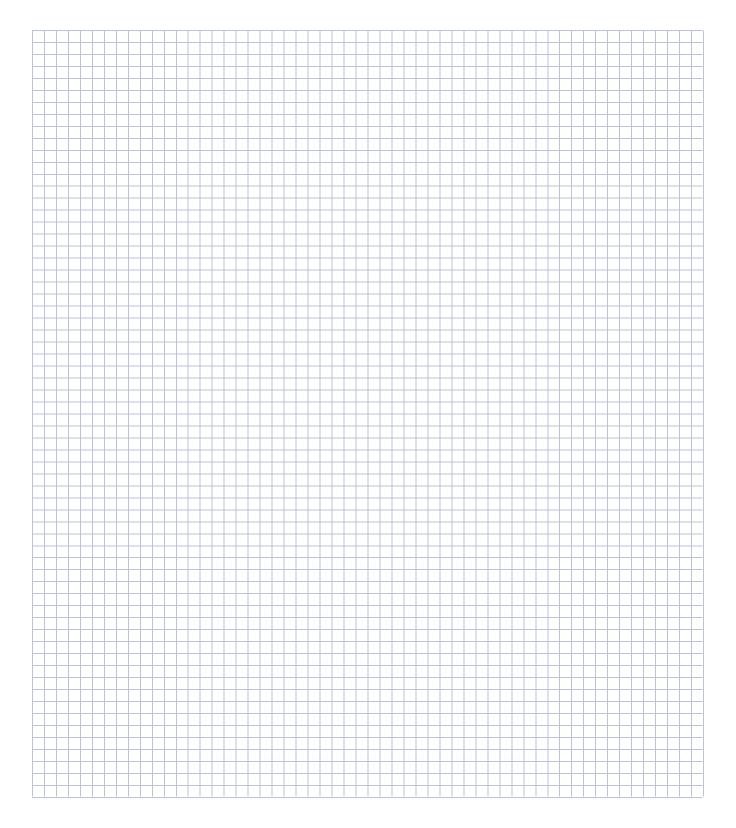
IC33 Outline Drawings



Ironcore Water-Cooled Motors Series

Motor Coil	Coil Width	Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Coolea	without Cover	w/ Magnet Cover	"N"
IC33-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC33-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC33-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC33-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

- Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)



Connector Option								
Connector	Length							
P1	400 (16)							
P2	200 (8)							
P3	100 (4)							
P4	1200 (48)							

C1	400 (16)
C2	200 (8)
C3	100 (4)
C4	1200 (48)

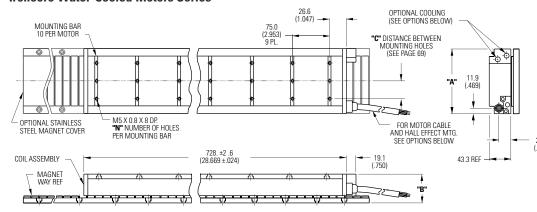
Note: Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72

IC44 Performance Data

Ironcore Water-Cooled Motors Series

Rated Perfomance	Symbol	Units		IC44-030		IC44-050			IC44-075		
Dook Farra	F	N		1260		2101			3154		
Peak Force	Fp	lbf		283		472			709		
0 5 @ 7 (4)	F	N	1036			1711			2568		
Continuous Force @ Tmax (1)	Fc	lbf		233			385		577		
Motor Constant @ 25°C	Km	N/√W		39.9		56.8			74.0		
		Electr	ical Spe	cificati	ons (2)						
		Winding Code	A1	A2	А3	A1	A2	А3	A1	A2	A3
Peak Current	lp	Arms	13.8	27.6	55.2	13.8	27.6	55.2	13.8	27.6	55.2
Continuous Current @Tmax	lc	Arms	9.9	19.7	39.5	9.8	19.6	39.1	9.8	19.5	39.1
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	6.2	1.6	0.39	8.5	2.1	0.53	11.3	2.8	0.71
Electrical Inductance ±20%	L	mH L-L	41.3	10.3	2.6	66.1	16.5	4.1	97.3	24.3	6.1
Back EMF Constant	V -	Vpeak/m/s L-L	99.4	49.7	24.8	166	82.9	41.4	249	124	62.2
@ 25°C±10%	Ke	Vpeak/in/sec L-L	2.52	1.26	0.63	4.21	2.11	1.05	6.32	3.16	1.58
Force Constant	Kf	N/Arms	122	60.9	30.4	203	102	50.8	305	152	76.2
@ 25°C±10%	KI	lbf/Arms	27.4	13.7	6.8	45.6	22.8	11.4	68.5	34.2	17.1
		Mech	anical S	Specific	ations						
Coil Assembly Weight ±15%	Mc	kg	9.6		13.9			19.2			
Coll Assembly Weight ±10 /6	IVIC	lbs		21.2		30.6			42.3		
Magnetic Way Type				MC030		MC050			MC075		
Magnetic Way Weight ±15%	Mw	kg/m		5.4			7.5			10.1	
Magnetic Way Weight 21370	10100	lb/in		0.30			0.42			0.56	
		Figures of	Merit a	nd Addit	tional D	ata					
Electrical Time Constant	Te	ms		6.7			7.8			8.6	
Max.Theoretical Acceleration (3)	Amax	g's		15.9			18.3			19.9	
Magnetic Attraction	Fa	kN		5.9			9.8			14.7	
Magnotic Attraction	i d	lbf		1322			2203			3305	
Thermal Resistance (4) (coils to external structure)	Rth	°C/Watt		0.082		0.061			0.046		
Max. Allowable Coil Temp. (4)	Tmax	°C		130			130		130		
Min. Flow Rate of Coolant at a Max. Temperature of 25°C		liters/min.		2.8		2.8		2.8			

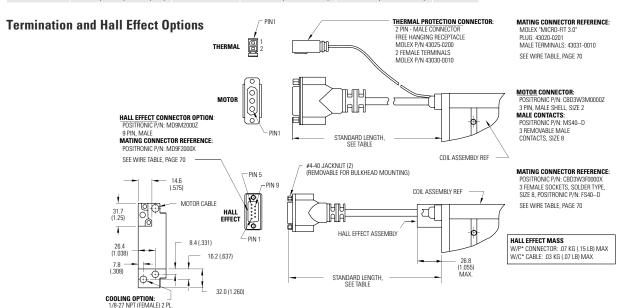
- 1. The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- 2. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- 3. Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- 4. Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.


Rated Perfomance	Symbol	Units		IC44-100		IC44-150		IC44-200			
Dook Force	Γn	N		4202			6303			8407	
Peak Force	Fp	lbf	945		1417		1890				
Continuous Force @ Tmax (1)	Fc	N	3457			5133		6916			
Continuous Force @ Illiax (1)	ΓÜ	lbf		777			1154			1555	
Motor Constant @ 25°C	Km	N/√W		88.3			112			132	
	Electrical Specifications (2)										
		Winding Code	A1	A2	A3	A1	A2	A3	A1	A2	A3
Peak Current	lp	Arms	13.8	27.5	55.1	13.8	27.6	55.3	13.8	27.6	55.2
Continuous Current @Tmax	lc	Arms	9.9	19.8	39.5	9.8	19.6	39.2	9.9	19.8	39.6
Elextrical Resistance @ 25°C±10%	Rm	Ohms L-L	14.1	3.5	0.88	19.8	5.0	1.2	25.5	6.4	1.6
Electrical Inductance ±20%	L	mH L-L	128	32.1	8.0	191	47.7	11.9	253	63.3	15.8
Back EMF Constant	Ke	Vpeak/m/s L-L	331	166	82.9	497	249	124	663	332	166
@ 25°C±10%	NE	Vpeak/in/sec L-L	8.42	4.21	2.11	12.6	6.32	3.16	16.8	8.42	4.21
Force Constant	Kf	N/Arms	406	203	102	609	305	152	812	406	203
@ 25°C±10%	NI	lbf/Arms	91.3	45.6	22.8	137	68.5	34.2	183	91.3	45.7
		Mech	anical S	pecific	ations						
Coil Assembly Weight ±15%	Mc	kg		25.0			36.2			47.4	
Coll Assembly Weight ±13 /0	IVIC	lbs		55.1			79.8			104	
Magnetic Way Type				MC100		MC150		MC200			
Magnetic Way Weight ±15%	Mw	kg/m		12.7			20.7			26.8	
		lb/in		0.71		1.16				1.50	
		Figures of	Merit a	nd Addit	ional Da	ata					
Electrical Time Constant	Te	ms		9.1		9.6			9.9		
Max.Theoretical Acceleration (3)	Amax	g's		20.4		21.1			21.5		
Magnetic Attraction	Fa	kN				29.4			39.4		
		lbf	4406		6609			8855			
Thermal Resistance (4)	Rth	Rth °C/Watt		0.036			0.026			0.020	
(coils to external structure)	т	°C		100		400					
Max. Allowable Coil Temp. (4)	Tmax	-		130			130			130	
Min. Flow Rate of Coolant at a Max. Temperature of 25°C		liters/min.		2.8			2.8			2.8	

- The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. Alternate windings can be made available. Please consult the Kollmorgen Customer Support for design options.
- Maximum theoretical acceleration is based on the motors peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, the peak current available from the amplifier etc. must be considered to determine the achievable acceleration in each application.
- Please see our application sizing pages in the back of this guide for more details on sizing and thermal considerations.

IC44 Outline Drawings

Ironcore Water-Cooled Motors Series

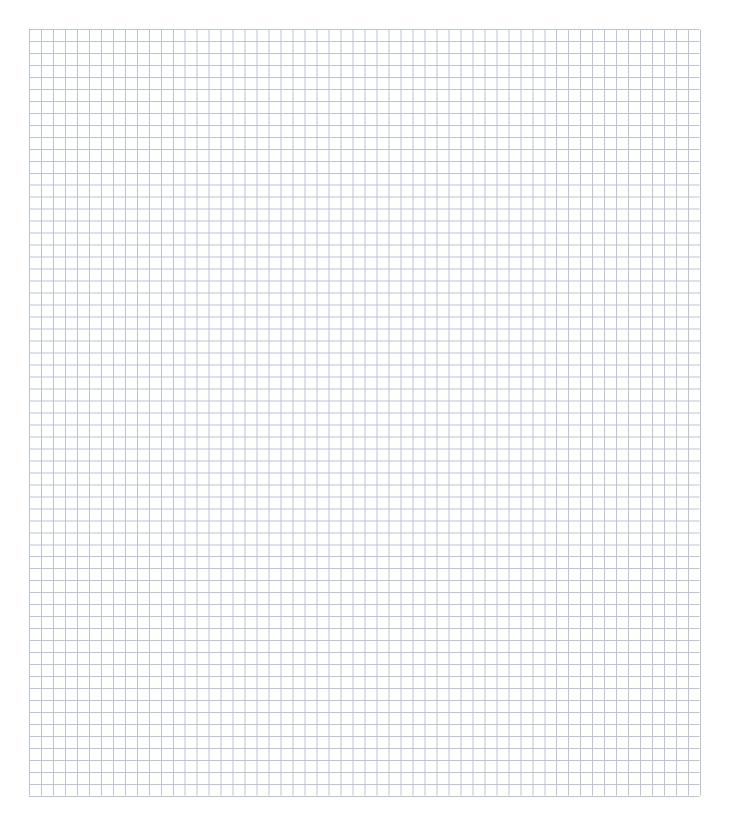


Resultant airgap = 0.9mm (.036) nominal (0.5mm (.020") minimum) when components are set up to dimension "B" in table below. (Please refer to installation manual for 227 or detail)

Motor Coil	Coil Width	Cooled	Dim "B"	Dim "B"	# Holes
Туре	"A"	Coolea	without Cover	w/ Magnet Cover	"N"
IC44-030	65.0 (2.559) ± 1.0 (.04)	ICXX-030	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-050	85.0 (3.346) ± 1.0 (.04)	ICXX-050	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	2
IC44-075	110.0 (4.331) ± 1.0 (.04)	ICXX-075	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-100	135.0 (5.315) ± 1.0 (.04)	ICXX-100	58.3±0.1 (2.295±.004)	58.6±0.1 (2.307±.004)	3
IC44-150	185.0 (7.283) ± 1.0 (.06)	ICXX-150	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	5
IC44-200	235.0 (9.252) ± 1.0 (.06)	ICXX-200	60.3±0.1 (2.374±.004)	60.6±0.1 (2.386±.004)	6

Notes:

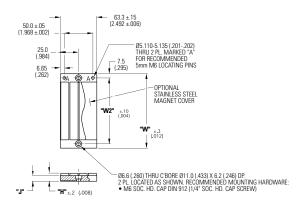
- Dimensions in mm (inches)
- Tolerances unless otherwise specified: no decimal place ±0.8 (0.3)
 X decimal place ±0.1 (.004)
 XX decimal place ±0.05 (0.002)



Connector Option				
Connector	Length			
P1	400 (16)			
P2	200 (8)			
P3	100 (4)			
P4	1200 (48)			

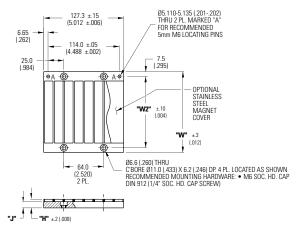
C1	400 (16)
C2	200 (8)
C3	100 (4)
C4	1200 (48)

Cables exiting motor and hall effects are not dynamic flex cables. For high life flex extension cables, see page 72



Ironcore Magnet Ways

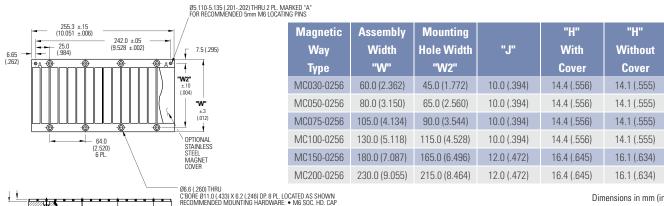
MCxxx-0064



Magnet assembiles are modular and can be installed in multiples of same or alternate lengths. Standard lengths are shown below.

Magnetic	Assembly	Mounting		"H"	"H"
Way	Width	Hole Width	"J"	With	Without
Туре	"W"	"W2"		Cover	Cover
MC030-0064	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC050-0064	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC075-0064	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC100-0064	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC150-0064	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0064	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)

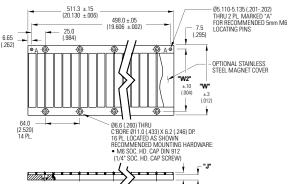
Dimensions in mm (in)


MCxxx-0128

Magnetic Way	Assembly Width	Mounting Hole Width	"J"	"H" With	"H" Without
Туре	"W"	"W2"		Cover	Cover
MC030-0128	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC050-0128	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC075-0128	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC100-0128	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.556)	14.1 (.555)
MC150-0128	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
MC200-0128	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)

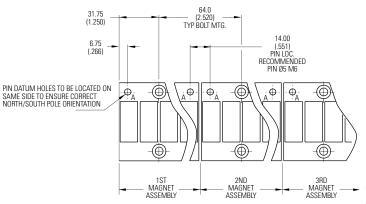
Dimensions in mm (in)

MCxxx-0256


Dimensions in mm (in)

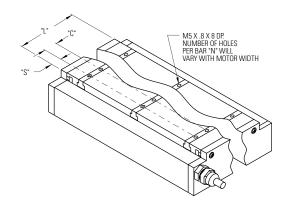
DIN 912 (1/4" SOC. HD. CAP SCREW)

www.servo2go.com


MCxxx-0512

M6	Magnetic Way	Assembly Width	Mounting Hole Width	"J"	"H" With	"H" Without
	Туре	"W"	"W2"		Cover	Cover
	MC030-0512	60.0 (2.362)	45.0 (1.772)	10.0 (.394)	14.4 (.556)	14.1 (.555)
	MC050-0512	80.0 (3.150)	65.0 (2.560)	10.0 (.394)	14.4 (.556)	14.1 (.555)
	MC075-0512	105.0 (4.134)	90.0 (3.544)	10.0 (.394)	14.4 (.556)	14.1 (.555)
	MC100-0512	130.0 (5.118)	115.0 (4.528)	10.0 (.394)	14.4 (.556)	14.1 (.555)
	MC150-0512	180.0 (7.087)	165.0 (6.496)	12.0 (.472)	16.4 (.645)	16.1 (.634)
	MC200-0512	230.0 (9.055)	215.0 (8.464)	12.0 (.472)	16.4 (.645)	16.1 (.634)

Dimensions in mm (in)


Typical Installation of Multiple Ironcore Magnet Assemblies

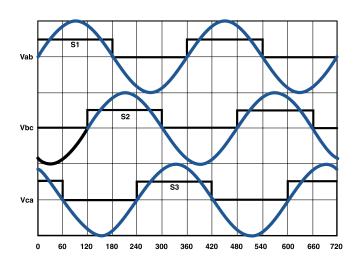
Magnet Way widths correspond to the mating coil assembly width. Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm. Multiple magnet assemblies can be installed to obtain the desired length. Shown below is the method to mount multiple assemblies.

RESULTANT GAP BETWEEN MAGNET ASSEMBLIES FROM PROPER PIN LOCATION. DO NOT BUTT MAGNET ASSEMBLIES.

Typical Mounting Bar Lengths & Mounting Holes Tabulation

Magnetic Coil Type	Number of Holes "N"	Spacing Between Holes "C"	Mounting Bar Length "L"	"S"
ICXX-030	2	16.0 (0.630)	30 (1.18)	7.0 (.276)
ICXX-050	2	36.0 (1.417)	50 (1.97)	7.0 (.276)
ICXX-075	3	32.0 (1.260)	75 (2.95)	5.5 (.217)
ICXX-100	3	36.0 (1.417)	100 (3.94)	14.0 (.551)
ICXX-150	5	32.0 (1.260)	150 (5.91)	11.0 (.433)
ICXX-200	6	36.0 (1.417)	200 (7.87)	10.0 (.394)

Dimensions in mm (in)

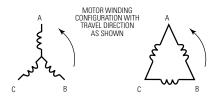

Wiring and Output

Motor Wire Table SEE TABLE BELOW FOR AWG DIA		Hall Effect Wire Table 26 AWG 6.0 DIA (.24")			Thermal Protection Wire Table Thermistor 26 AWG 3.8 (.15")			
Pin Number	Color or Wire No.	Function	Pin Number	Color	Function	Pin	Color	Transition Point
1	Red	ØA	1	Gray	+5 VDC	1	DII-/\//-:+-	120°C (IC/ICD)
2	White	ØB	2	Green	S1	'	Black/White	90°C (IL)
3	Black	ØC	3	Yellow	S2	2	DII-/\//-:+-	120°C (IC/ICD)
Connector Shell	Grn/Yel	GND	4	Brown	S3	Z	Black/White	90°C (IL)
Connector Shell	Violet	Shield	5	White	Return			0
			Shell	Shield	Shield		see r	note 2

Notes:

- 1. Ground and shield connection at shell: first make/last break
- 2. TIC-X extender cable is shielded

Motor BEMF phases A,B,C relative to Hall effect devices S1,S2,S3 with coil travel direction towards the motor output cable assembly exit as shown below.


IL WIRE TABLE				
WINDING CODE	AWG	APPROX. CBL. DIA.		
ALL (A1,A2,A3,A4)	18	5.6mm (.22 IN)		

ICD WIRE TABLE				
WINDING CODE	AWG	APPROX. CBL. DIA.		
ALL (A1 - A4)	22	5.1mm (.20 IN)		

IC WIRE TABLE NON-COOLED				
WINDING CODE	AWG	APPROX. CBL. DIA.		
A1	18	5.6mm (.22 IN)		
A2	18	5.8mm (.22 IN)		
A3	14	8.9mm (.27 IN)		
A5	18	5.8mm (.22 IN)		
A6	14	6.9mm (.27 IN)		
A7	10	7.9mm (.31 IN)		

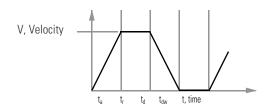
IC WIRE TABLE COOLED (AC)					
WINDING CODE	AWG	APPROX. CBL. DIA.			
A1	A1 18	5.6mm (.22 IN)			
A2	14	8.9mm (.27 IN)			
A3	10	7.9mm (.31 IN)			
A5	14	8.9mm (.27 IN)			
A6	12	7.9mm (.31 IN)			

Both Ironcore (IC) and Ironless (IL) feature the same pole pitch, which is 32 mm (360 electrical degrees).

Note

 $1. \hspace{0.5cm} \hbox{The diagram above refers to both Ironless and Ironcore motors} \\$

To size a Linear Motor, you will need to:


- 1. Define a Move Profile
- 2. Define the Load
- 3. Size the Motor and the Amplifier

From the move profile, we can calculate the maximum speed and the maximum acceleration/deceleration. From the load we can calculate all of the forces at constant speed and using the move profile all the dynamic forces during acceleration and deceleration. Once a motor is selected, the weight of the moving parts of the motor are added to the moving weight to calculate a total Peak Force and a total RMS force. The motor should be able to deliver the peak force and the calculated RMS force should be higher than the continuous force to ensure a known safety margin. The coil temperature rise can also be calculated to ensure that it is lower than the intended maximum temperature rise.

The maximum bus voltage and continuous and peak current can also be calculated and compared to the selected amplifier to be sure the calculated performances can be achieved.

1. Move Profile

Triangular/Trapezoidal

ı	Inite	

	SI	English
S _m - Move displacement	meters	inches
t _a - Acceleration Time	seconds	seconds
t _r - Time run at constant speed	seconds	seconds
t _d - Deceleration Time	seconds	seconds
t _{dw} - Dwell Time	seconds	seconds
V _m - Max Velocity	meter/sec.	inches/sec
A _m - Acceleration	meter/sec ²	inches/sec ₂
D _m - Deceleration	meter/sec ²	inches/sec ₂

EXAMPLE: Move 0.1 meter in 100 msec assuming $t_a = t_d$ and t_r =0, (assume triangular move)

Max Speed: $V_m = 2 \cdot S_m / (t_a + t_d + 2 \cdot t_r)$ $V_m = 2 \cdot 0.1 / (100E-3)$ = 2 meter/sec

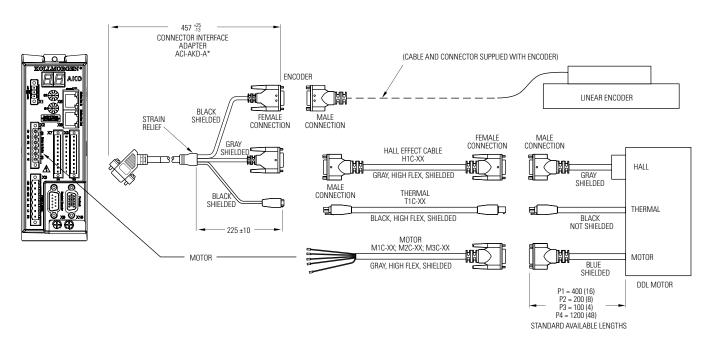
Max Acceleration/Deceleration

Acceleration	$A_m = Vm / ta$
	$A_{\rm m} = 2 / 50E-3$
	= 40 meter/sec
	A_{m} "g" = $A_{m}/9.81$
	a(g) = 40 / 9.81
	= 4.08 g

 $\begin{array}{ll} \textbf{Deceleration} & D_m = V_m/t_d \\ D_m = 2/50E\text{-}3 \\ = 40 \text{ meter/sec}^2 \\ D_m \ "g" = D_m/9.81 \\ d(g) = 40/9.81 \\ = 4.08 \text{ g} \end{array}$

2. Load	Units		
	SI	English	
F _{ext} - External Force only	N	lbf	
(Cutting force, etc.)			
F _{acc} - Acceleration Force only	N	lbf	
F _r - Run Force at constant speed	N	lbf	
F _{dec} - Deceleration Force only	N	lbf	
F _{am} - Max. Acceleration Force	N	lbf	
F _{dm} - Max. Deceleration Force	N	lbf	
F _{dw} - Dwell Force	N	lbf	
F _{rms} - RMS Force	N	lbf	
$\boldsymbol{\mu}$ - Coefficient of Friction	_	_	
(bearing support)			
M _I - Load Mass	kg	lbs	
M _c - Coil Mass	kg	lbs	
M_{cb} - Counterbalance Mass	kg	lbs	
F _a - Magnetic Attraction Force	N	lbf	
CB - Counterbalance of load in %	_	-	
q - Angle of Linear Displacement			
with horizontal			
(0°= horizontal, 90° vertical)	degrees	degrees	
g - Gravity coefficient	9.81 m/s ²	386 in/s ²	
n - Number of motors in parallel	_	_	

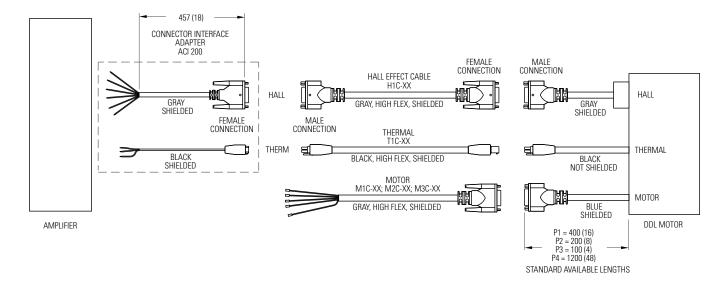
High Flex Cable Sets



Features

- High Flex cable designed for dynamic, continuous flexing applications
- Cable track compatible
- Molded, high reliability connectors
- Oil resistant PVC jacket
- 105°C / 600V motor cable, 105°C / 300V Hall effect and thermal sensor cable
- CE compliant, fully shielded low impedance cable and connectors
- Fully tested, color coded, shipped with schematics
- Complete cable system for simple and reliable plug-and-play installation

Standard lengths of 1, 3, 6, 9, 12 and 15 meters available. For other lengths, consult Kollmorgen Customer Support.


High Flex Cables for Use with AKD

Note: ACI-AKD-A for use with Heidenhain Encoders. ACI-AKD-B for use with Renishaw Encoders.

Dimensions in mm (in)

High Flex Cables for Generic Applications

Dimensions in mm (in)

Minimum recommended Dynamic Bend Radius 15x cable diameter

Cable Assembly	AWG	Wire Diameter Min. Dynamic Radius (15x wire Ø	
M1C	18	11.0mm (.430in)	165mm (6.5in)
M2C	14	12.6mm (.495in) 185mm (7.3in)	
M3C	12	14.2mm (.560in)	215mm (8.5in)
T1C	22	6.0mm (.235in)	90mm (3.5in)
H1C	26	6.0mm (.235in)	90mm (3.5in)

- Cables are designed for minimum life cycle of millions of cycles under ideal conditions. Actual field application conditions may or may not produce the cable life described here in.
- 2. To ensure longest possible cable life under dynamic conditions, cables should be relaxed 24 hours before use by hanging freely at its mid-point. Cable is ready when very little memory is present. Cable should be installed in the 'plane of original flexure.' Cable should be installed with lowest possible mechanical tension. Avoid torsional bending.
- 3. Minimum recommended dynamic bend radius is 15x largest cable diameter used in cable track; use a large bend radius whenever possible. Clearance between cables and track should be a minimum of 20% of the cable diameter. Use of a clamp or nylon cable tie that creates localized stress within the cable track must be avoided. Minimum distance from the clamping point to the start of the bend radius must be 25x the largest cable diameter used in the track.
- 4. Cable track manufacturer should be consulted for application assistance.

Application Sizing

BASIC FORMULAS*:

We assume a general case where we have n motors solidly coupled pushing the load and a possible counterbalance weight Mcb (Mostly for vertical displacement).

Example of Coefficient of Friction µ:

Linear bearing w/ balls	0.002 - 0.004
Linear bearing w/ rollers	0.005
Steel on oiled steel	0.06
Steel on dry steel	0.2
Steel on concrete	0.3

Counterbalance Weight:

 $M_{cb} = MI \bullet CB/100$

Acceleration Force only:

Facc = $[(M_1/n) \bullet (1 + CB/100) + M_c] \bullet Am$

Run Force at constant speed:

$$F_r = (M_1/n + M_c) \bullet g \bullet SIN(q) + m \bullet COS(q) - (Mcb/n) \bullet g + F_a \bullet \mu + F_{ext}/n$$

Deceleration Force only:

$$F_{dec} = [(M_1/n) \bullet (1 + CB/100) + M_c] \bullet D_m$$

Maximum Acceleration Force:

$$F_{am} = F_{acc} + F_r$$

Maximum Deceleration Force:

$$F_{dm} = F_{dec} - F_r$$

Dwell Force:

$$F_{dw} = (M_1/n + M_c) \bullet g \bullet [SIN(q)] - (M_{cb}/n) \bullet g$$

RMS Force:

$$F_{rms} = \sqrt{\frac{F_{am}^2 \bullet t_a + F_r^2 \bullet t_r + F_{dm}^2 \bullet t_d + F_{dw}^2 \bullet t_{dw}}{t_a + t_r + t_d + t_{dw}}}$$

For English units use weight in lbs instead of mass \bullet g.

3. Size the Motor and Amplifier

example:

Moving Weight:	MI = 0.5kg
Number of Motors:	n = 1
Horizontal Move:	q = 0
Counterbalance Force:	$M_{cb} = 0$
External Force:	$F_{ext} = 0$
Friction Coefficient:	m = 0.01

Assume same move as above with a Dwell Time of 50 ms.

Run Force at Constant Speed:	$F_r = 0.5 \bullet 9.81$	●0.01=0 .05 N
Acceleration Force only:	$F_a = 0.5 - 40$	= 20 N
Deceleration Force only:	$F_d = 0.5 - 40$	= 20 N
Maximum Accel Force:	$F_{am} = 20 + 0.05$	= 20.05 N
Maximum Decel Force:	$F_{dm} = 20 - 0.05$	= 19.95 N
Rms Force:		

$$F_{rms} = \sqrt{\frac{(20.05)^2 \bullet (50E-3) + (19.95)^2 \bullet (50E-3)}{100E-3 + 50E-3}}$$

 $F_{rms} = 16.3 \text{ N}$

Motor Sizing:

If we select an ironless motor for smoothest possible move we can use Motor IL060-30A1. This motor has a coil mass of 0.21 kg and no attractive force. By adding that weight in equations above, we need an additional Force of 0.21 \bullet 40 \bullet 0.01= 0.084 N. So Peak Force is 20.05 + 0.08 = 28.45 N and RMS force: 23.19 N. This motor will have a safety factor of (38-23.19) \bullet 100/38 = 39%.

Sizing the Amplifier :	Units			
-	SI	English		
I _a - Max Acceleration Current	А	Α		
I _r - Run Current	Α	Α		
I _d - Max Deceleration Current	Α	Α		
I _{dw} - Dwell Current	Α	Α		
I _{rms} - RMS Current	Α	Α		
K _f - Force Constant	N/A	lbf/A		
R _m - Motor Electrical Resistance	Ohms L-L	Ohms L-L		
K _e - Back EMF Constant	Vpeak/m/s	Vpeak/in/s		
V _{bus} - Bus Voltage	VDC	VDC		
L - Electrical Inductance	H L-L	H L-L		
Max Acceleration Current:	$I_a = F$	am/K _f		
Run Current at constant Speed:	$I_r = I$	F_r/K_f		
Max Deceleration Current only:	$I_d = F$	$\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$		
Dwell Current:	$I_{dw} = I$	F_{dw}/K_f		
RMS Current:	$I_{rms} = I$	F_{rms}/K_f		

^{*} All calculations are given in SI units.

www.servo2go.com

Bus Voltage:

If we assume a sine wave drive with a phase advance θ (degrees) and full conduction, the minimum bus voltage (see Fig. 1) is:

$$V_{b1} = 2.4 \text{ (Volts)}$$

$$V_{h2} = K_e \bullet V_m$$

$$V_{b3} = 1.225 \bullet R_{m,hot} \times I_{rms}$$

$$V_{b4} = 7.6953 \bullet L \bullet I_{rms} \bullet Vm/Pitch$$

$$av = ARCTANGENT (V_{b4}/V_{b3})$$

$$V_{lr} = \sqrt{V_{b3}^2 + V_{b4}^2}$$

$$V_{hre} = V_{h2} + VIr \bullet COS(av + \theta)$$

$$V_{bin} = V_{lr} \bullet SIN(av + \theta)$$

$$V_{bus} = V_{b1} + \sqrt{V_{bre^2} + Vbim^2}$$

Note: If there is no Phase advance take θ =0°.

Figure 1:

THERMAL CONSIDERATIONS:

	Units	
	SI	English
$\Delta \theta$ - Coil increase of temperature	°C	°F
R _{th} - Thermal Resistance	°C/W	°F/W
K _m - Motor Constant	N/\sqrt{W}	Ibf/ \sqrt{W}
P _{out} - Output Power	W	W

Coil Temperature rise

$$\Delta\theta = R_{th} \bullet (F_{rms}/Km)^2$$

Resistance of Coil hot (copper)

$$R_{m,hot} = \frac{R_{ambient} (234.5 + \theta_{hot})}{(234.5 + \theta_{hot})}$$

Power Losses

$$P_{lrms} = \Delta \theta / R_{th} =$$

Output Power
$$\frac{(\theta_{hot} - \theta_{ambient})}{R_{th}}$$

$$P_{out}(max) = F_{am} \bullet V_{m}$$

Example: In above example with:

$$R_{th} = 1.61 \text{ °C/W}$$

 $K_m = 4.7 \text{ N/ W,}$

Coil Temperature rise: $\Delta\theta = 1.61 \cdot (23.19/4.7)^2 = 39.2 \,^{\circ}\text{C}$

Power Losses PI = 39.2/1.61 = 24.34 Watts Max output Power $P_{out}(max) = 57$ Watts.

The Use of the Motor Constant K_m:

Cognizance of the heat load being generated by the linear motor is an important consideration in the application of any linear motor. Linear motors are direct drive devices, typically mounted very close to the moving load. Therefore, any heat generated by the linear motor needs to be managed to avoid affecting the process or workpiece that the moving load is carrying. The motor constant $K_{\rm m}$ is a powerful parameter that can be used to determine this heat load.

$$K_m$$
 equals:

$$K_m = \frac{F}{\sqrt{P_c}}$$

where the RMS force F is in Newtons, the RMS heat load Pc is in watts and Km is in units of N/ \sqrt{W}

Application Sizing

The motor constant, K_M , allows us to determine motor performance capabilities such as shown in the following two examples. In the first example, we use K_M to calculate, for a given force, how many watts of generated heat are dissipated by the motor's coil assembly. In the second, we use K_M to determine the maximum RMS force developed by the motor when the dissipated power is limited to some value.

1. An application requires a continuous thrust force of 200 Newtons. The IC11-050 ironcore motor is a good candidate, having a continuous force rating of 276 Newtons and a K_M of 32.0 N/W. Therefore, since resistance rises 1.405 times at 130°C from the ambient value at 25°C, and since resistance is the square root denominator of K_M , we must write our equation as follows,

Force =
$$\frac{K_M}{\sqrt{Factor}}$$
 $\sqrt{Power (dissipated)}$

$$200 = \frac{32.0}{\sqrt{1.405}} \sqrt{\text{Watts}}$$

Watts = 54.9

This value of watts is the power or heat generated by the motor. It is interesting to note that for the same application, a larger IC11-100 ironcore motor, with a K_M of 49.1 N/ \sqrt{W} , would dissipate only 23.3 watts for the same force, F.

2. The same application requires that no more than 45 watts are to be dissipated by the motor into the surrounding structure and environment. What is the maximum RMS force that the IC11-050 motor may produce while not exceeding this power limit?

Maximum RMS Force =
$$\frac{32.0}{\sqrt{1.405}}$$
 $\sqrt{45}$ = 181 N

Therefore, if the motor delivers no more than 181 N of thrust force on an RMS basis, then this same motor will not dissipate more than 45 watts.

Continuous Force Fc as a Function of Ambient Temperature

In our data sheets the continuous rated force Fc is the RMS force that the motor can supply continuously 100% of the time, assuming the ambient temperature is 25 degrees C and with the coils achieving a maximum temperature of 130 degrees C. At higher (or lower) ambient temperatures, the Fc of the motor must be adjusted by a factor that is determined by the following equation:

Factor =
$$\sqrt{\frac{(130 - \theta_{Amb})}{105}}$$

where θ_{Amb} = Ambient Temperature

This factor vs. ambient temperature works out as:

5°C	10	15	20	25	30	35	40	45
1.091	1.069	1.047	1.024	1	0.976	0.951	0.926	0.900

APPLICATION SIZING WORKSHEET

Application Sizing Worksheet

Gustonier.		Froject Maille.	
Contact:		Axis Name:	
Telephone:		Prepared by:	
fax:		E-Mail:	
Move			
Axis Orientation		☐ horizontal	□ vertical
Typical Move			□ in
Typical Travel Time			☐ in
Typical Move Time			
Maximum Speed			☐ inches/sec
Minimum Speed			inches/sec
Max. Acceleration			☐ inches/sec ² ☐g
or Accel/Decel Time Dwell Time			
More Profile		☐ triangular	☐ S-curve
Loads			
Friction Coefficient			
Max Load Mass			☐ lb
Thrust Force			☐ lbf
Is this thrust present during Accel/Decel?		\[\] Yes	□ No
Precision			
Repeatability		_ μm	☐ inch
Absolute Accuracy			☐ inch
Resolution		□ μm	☐ inch
Encoder Feedback			
Signal Period		μm	
Resolution		lines/mm	☐ lines/in
Electronic Interpolation		☐ No If Yes, N	Muliplication Factor:
Environment			
Ambient Temperature		°C	□ °F
Max Permissible Temperature Rise		□ °C	□ °F
Clean Room Environment			☐ No If Yes Class:
Is Water or Air Cooling Permissible?			□ No
Vacuum?		_ Yes	☐ No Pressure:
Amplifier & Power Supply			
Max Voltage		VDC	
Max Current		Amps	
Power Supply			☐ Three Phase
Voltage	V	□ 50 Hz	□ 60 Hz

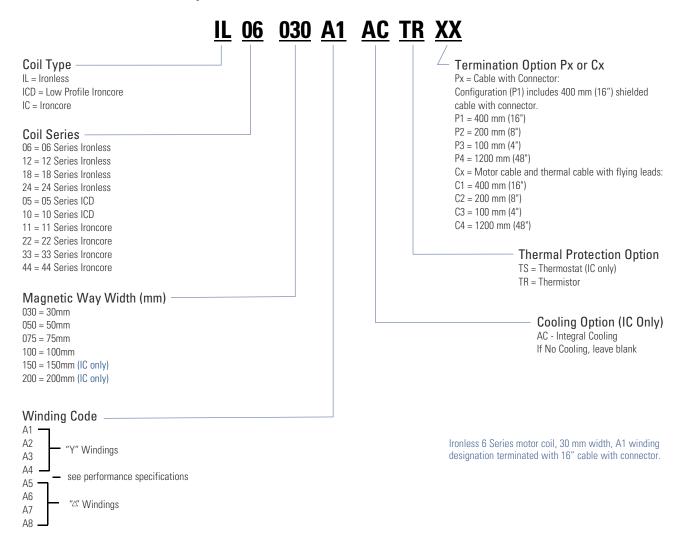
Model Nomenclature

High Flex Cable Numbering System

]	<u>M1C</u> – <u>01</u>
High Flex Motor Cable M = Motor Wire Size 1C = 18 AWG for AKD 3/6 Amp amplifiers 2C = 14 AWG for AKD 12 Amp amplifiers *	Length in meters 01 = 1 meter 03 = 3 meters 06 = 6 meters 09 = 9 meters 12 = 12 meters 15 = 15 meters
3C = 12 AWG for AKD 24 Amp amplifiers *	Example: M1C - 06 High flex motor cable, terminated with connectors at motor and amplifier ends, 18 AWG, for 3 or 6 Amp AKD.

<u>H1C</u> – <u>01</u>	
High Flex Hall Effect Cable H1C = Hall Effect	Length in meters 01 = 1 meter
	03 = 3 meters
Example: H1C - 06	06 = 6 meters
High flex Hall Effect cable, terminated with connectors at	09 = 9 meters
motor and amplifier ends.	12 = 12 meters
	15 = 15 meters

High Flex Thermal Cable
T1C = Thermal
T2C = Thermal (\$300, \$600)


Example: T1C - 06
High flex Thermal cable, terminated with
connectors at motor and amplifier ends.

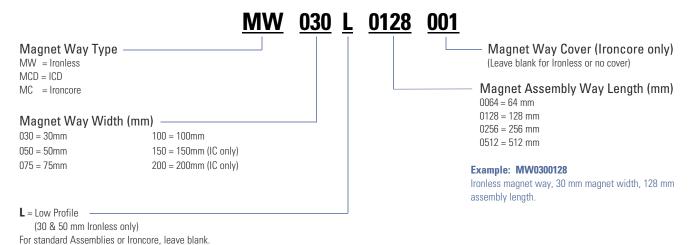
Length in meters
01 = 1 meter
03 = 3 meters
06 = 6 meters
09 = 9 meters
12 = 12 meters
15 = 15 meters

^{*} For application assistance regarding cable selection for these and other higher current rated amplifiers, contact a Kollmorgen Customer Support representative.

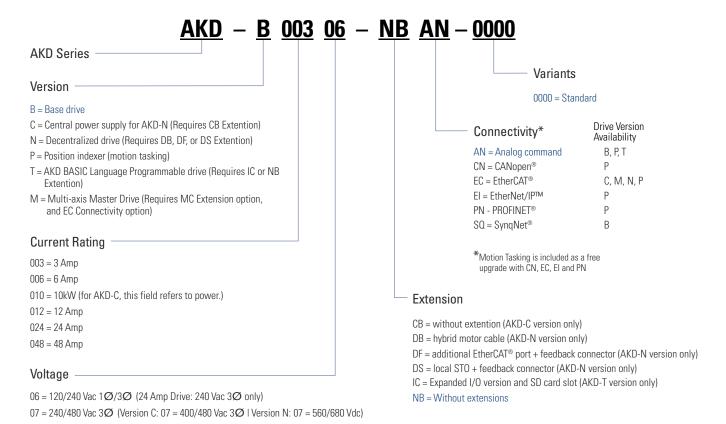
Coil Model Number Description

Hall Effect Assembly Model Number Description

HDIL 100 **XX**



Hall effect assembly with digital outputs for Ironless motor terminated with 16" cable with connector.

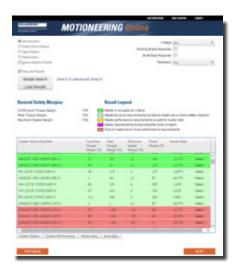

Model Nomenclature

Magnetic Way Model Number Description

AKD® Servo Drive

Note: Options shown in blue text are considered standard.

MOTIONEERING® Online



MOTIONEERING® Online — Kollmorgen has revamped, modernized and put online one of the most respected applications sizing programs of the last 20 years. You now can access this application sizing and selection tool wherever you have access to the internet. MOTIONEERING Online is just a start of a series of releases that will empower you to optimize solutions for your toughest applications. Sizing frameless motors and drive systems has never been easier. Using a mechanism project concept for collecting and saving multiple axes of load information, MOTIONEERING® Online can automatically calculate application results and compare against a catalog of systems - recommending the most optimized set of Kollmorgen system solutions available.

Versatile units-of-measure selection options for mechanism and motion profile data-entry, with the ability to convert data into other available units, makes this a convenient international tool. A user-friendly Help file teaches program functions and algorithms used to provide results.

Mechanism Projects

- · Direct drive entry, lead screw, conveyor
- Rack and pinion, nip rolls
- Direct Drive Rotary
- · Electric Cylinder
- · Direct data entry

Solution Set Search Screen

- · Color-coded indication of system's ability to meet application requirements
- Review system components specifications
- Save, print, or create a pdf application report
- Evaluate system performance curve with application points

MOTIONEERING® Online Features:

- Inertia Calculator lets you build up inertia based on odd shapes by additive or subtractive methods
- Custom Motion Profile easy to add entire segments or copy segments to repeat
- Environmental Factor takes into account your ambient temperature
- Project by Project Units You can tailor your units on a project by project basis, or use the global units settings

MOTIONEERING Online Supported Browsers

• IE. Chrome, Firefox, Safari

About Kollmorgen

Since its founding in 1916, Kollmorgen's innovative solutions have brought big ideas to life, kept the world safer, and improved peoples' lives. Today, its world-class knowledge of motion systems and components, industry-leading quality, and deep expertise in linking and integrating standard and custom products continually delivers breakthrough motion solutions that are unmatched in performance, reliability, and ease-of-use. This gives machine builders around the world an irrefutable marketplace advantage and provides their customers with ultimate peace-of-mind.

sales@servo2go.com www.servo2go.com

